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A "variational" theory, which gives a least upper bound to the rate of a chemical reaction, is presented. 
The reaction is represented by the motion of a point in phase space across a trial surface dividing the "initial" 
and" final" chemical states. The trial surface is well defined in regions of phase space where interactions 
causing reaction are negligible, but is subject to arbitrary variations otherwise. It is shown that a least 
upper bound to the reaction rate can be obtained by calculating the rate at which representative points 
cross the" trial" surface and then minimizing this rate with respect to allowed variations of the surface. Ex
plicit calculations of the recombination rate of attracting atoms in the presence of repulsive third bodies 
are made for a simple trial surface having one adjustable parameter. At low temperatures, the experimental 
rate constants are quite close to the theoretical bounds; at high temperatures, the experimental data fall 
away from the bounds in a manner which can be understood in terms of various approximations contained 
in the theory. Promising methods of improving the agreement between theory and experiment are discussed. 

1. INTRODUCTION 

ABASIC assumption of kinetic theories of chemical 
reaction rates is that transitions between states 

are induced by collisions. This leads to the concept 
of a "collision complex" through which reacting systems 
pass from the initial to the final state. l The "collision 
complex" includes those particle configurations for 
which the interaction inducing the transition is in some 
sense appreciable, and except for the case of "square 
well" interactions, its boundaries can only be loosely 
defined. Thus, absolute calculations of reaction rates 
based on a knowledge of the interaction potentials are 
not possible using kinetic theories, and for this reason 
they have been severely criticized. 

In the present paper, we shall present a method for 
calculating a rigorous upper bound to the rate of a 
chemical reaction which is free of this difficulty and 
provides an explicit connection between the reaction 
rate and the interaction potentials. The method is 
based on a variational principal and is similar to an 
approach outlined by Wigner2 in 1937. The reaction is 
represented by the motion of a point in phase space 
across a trial surface which divides the initial and final 
states of the system. In regions of phase space where 
interactions causing reaction are unimportant, the 
trial surface is uniquely defined by the chemical reac
tion. In the remaining regions, it is ambiguous and 
will be assumed arbitrary, except that it must not have 
any "holes." The division of the phase space into 
"initial" and "final" states by the trial surface will, of 
course, not be exact. However, for cases where the 
volume per particle in a gas is large compared to the 
interaction volume, this will have a negligible effect on 
the calculation of the gas properties. Since passage 
through the trial surface is a necessary condition for 

* This work was sponsored by the U. S. Army Rocket and 
Guided Missile Agency, Army Ordnance Missile Command, 
United States Army, Huntsville, Alabama under Contract No. 
DA-19-02(}-ORD-4862. 

reaction, a calculation of the rate at which systems 
cross it in one direction will yield an upper bound to 
the reaction rate. The least upper bound is obtained 
by varying the trial surface to find the minimum cross
ing rat.e. It will be shown that for appropriately chosen 
trial surfaces, it is possible to obtain bounds which lie 
very close to experimentally observed rates, and thus, 
the theory offers a promising approach to the problem 
of understanding reaction rates. 

Although we shall apply the method specifically to 
the three-body recombination reaction, it should be 
noted that the general principle involved in defining a 
trial surface, which can be varied to yield a least 
upper bound to a reaction rate, is applicable to a wide 
class of both chemical and physical problems. 

II. MATHEMATICAL DEVELOPMENT 

We are interested in reactions of the type 

(1) 

in which a system of three or more atoms in the initial 
chemical state A goes over into the final chemical 
state B. We shall assume that electronic transitions 
do not occur during the reaction and that the motion 
of the nuclei may be treated classically. With these 
approximations, the state of the system can be specified 
by a point in the phase space of the nuclei. Let S be a 
surface in this phase space which divides the "initial" 
state A from the "final" state B. In regions where 
interactions causing reaction are negligible, S is de
fined by the requirement that it coincide with the sur
face used to calculate the equilibrium constant for the 
reaction. In the remaining regions, S is ambiguous and, 
for practical purposes, arbitrary. In these regions, S 
can be chosen to suit our convenience, and any par
ticular choice of S can be regarded as a trial surface 
subject to arbitrary variations. As usual, such varia
tions will be made by the adjustment of a set of arbi-

1 J. C. Keck, J. Chern. Phys. 29, 410 (1958). 
2 E. P. Wigner, J. Chern. Phys. 5,720 (1937). trary parameters (Xj on which S depends. 
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Since the crossing of S is a necessary condition for 
reaction, an upper bound to the rate of reaction (1) 
can be obtained by calculating the rate R(a;) at which 
representative points in phase space flow across S in 
one direction. R(a;) can be expressed as an integral 
over S of the product of the phase space density P 
and the normal component of the generalized velocity 
of representative points. Thus, 

S 
R(a;)=j v'npdO', (2) 

v·n>O 
where dO' is an element of the surface S, n is the unit 
normal to dO', and v is the generalized velocity of a 
representative point. 

In general, one will not be able to specify the density 
exactly at points in phase space where three-body 
interactions are important. However, as a consequence 
of Liouville's theorem, we know that, for regions con
nected by trajectories satisfying the known conserva
tion laws, the density where interactions are important 
cannot exceed the maximum density Pm where interac
tions are unimportant. Thus, we will still obtain an 
upper bound to the reaction rate if we substitute 
pm for P in Eq. (2) : 

S 
Rm(a;) = j v·npmdO', (3) 

v·n>O 
Equation (3) may be transformed into an expression 

more convenient for calculation as follows: We define 
S by means of the equation, 

CP(Pi, qi, a;) =0. (4) 

In terms of cP the unit normal to S may be written, 

n=vcp/I vcp I. (5) 

By substituting Eq. (5) into Eq. (3) and expanding 
the dot product gives 

(6) 

Substituting Hamilton's equation of motion into Eq. 
(6) gives 

f ( aH acp aH aCP) dO' 
Rm(a;) = ~ Pm - aqi api + ap. aqi 1 Vcp I' (7) 

The quantity in parenthesis is the Jacobian J i of the 
transformation from dHdcp to dp,dq;. Thus, Eq. (7) 
may be rewritten, 

where 

Si={J/1 J./, 

lO, J,=O. 

(8) 

(9) 

Since dcp/I Vcp 1 is the element of length perpendicular to 
dO', the factor dO'dcp/1 Vcp I is just the volume element in 
phase space IIdPidqi, and Eq. (8) may be rewritten, 

; 

Rm(aj) = ~SifpmdH[!dhdqk' (10) 

The integration of Eq. (10) is to beJ?erformed subject 
to the constraints cp=O and v·n= LJ.~O. 

Having obtained the value of Rm(a;) from Eq. 
(10), we may find the values of a;, for which it is a 
minimum by setting 

(11) 

Substitution of the values of the a; obtained from Eq. 
(11) into Eq. (10) gives the least upper bound to the 
true reaction rate which can be obtained for the as
sumed "trial" surface and the given interaction po
tential. 

We should like to reiterate the reasons Rm(a;) is an 
overestimate of the reaction rate, because it is important 
to keep them in mind in comparing theory and experi
ment. First, we have included in our calculation all 
crossings of S in one direction, and some of these will 
be due to single trajectories which cross S more than 
once. Second, we have extended our integral over all of 
S and may have included regions which are inaccessible 
to trajectories originating outside the interaction zone. 
Finally, we have replaced the true density of points 
on S by the maximum value it can have consistent with 
the conservation laws. 

In concluding this discussion, we should like to point 
out that for the special case of a gas in thermodynamic 
equilibrium 

pm=p.=PO exp( -H/kT). (12) 

In Eq. (12) H is the total energy of a three-particle 
system which is, of course, conserved along a tra
jectory, and Po is a constant. 

III. THREE-BODY RECOMBINATION 

To illustrate the application of the foregoing prin
ciples, we shall calculate a least upper bound to the 
equilibrium recombination rate constant for the reac
tion 

(13) 

For simplicity, we shall assume that Aa is a repulsive 
catalyst so that no other reactions are possible. The 
trial surface S we shall use in this calculation is shown 
in Fig. 1. It is one of the simplest that can be con
structed which includes the effect of the rotational 
barrier. It depends on a single arbitrary parameter a 
in terms of which it may be decomposed into two faces 
SA and SB, 
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The face SA is defined by the relations, 

ra=a: (14) 
where 

Hl2 = PIN2Jl.JJ. + 1122/2Jl.12r122 + V12 (15) 

is the internal energy of AIA2, 

B= V12(Z) +tzdV121 
dr12 • 

(16) 

is the energy of the rotational maximum in the effective 
potential, V12+1122j2Jl.12r122, and z is the position of the 
rotational maximum defined by the condition, 

(a/ar12) [V12+11N (2Jl.12r122)] 1.= (dV /dr12) I. 
- (ltNJl.12z3) =0. (17) 

In the above equations, rs is the separation of Aa and the 
center-of-mass of Al and A2, r12 is the separation of Al 
and A2, P12 is the radial momentum of AIA2, 112 is the 
angular momentum of AIA2, V12 is the potential energy 
of AIA2, which is assumed to depend only on r12, and 
,u12=mlm2/(ml+m2) is the reduced mass of A1A2. 
The rate at which representative points in phase 
space flow across SA is simply the rate of binary 
collisions between molecules AIA2 and third bodies As 
for a collision diameter a. In the present problem, 
we shall be interested in the rate of binary collisions 
in which the energy to dissociate AIA2 is available in 
the center-of-mass system of AIA2+As. This rate will be 
called the "available energy" collision rate. 

The face SB is defined by the relations, 

(18) 

The rate at which representative points in phase space 
flow across SB is the analog of the Wigner rate, in
cluding the effect of the rotational barrier, and will be 
called the barrier rate. 

It should be clear from Fig. 1 and the definitions of 
SA and SB that S satisfies the requirements for an 
acceptable trial surface. The total rate of flow of repre
sentative points across S is just the sum of the available 

FIG. 1. Cross section of the trial surface used to calculate 
variational rate constant for three-body recombination. 

z 

x (0) 

m2 r'2 

A2 \f-,"' ___ ----- r '2 __ r,_= _m_,_+_m_2 __ -I 

(b) 

FIG. 2. Part (a) shows angular coordinates used in the present 
calculation. Part (b) shows coordinates giving the relative posi
tions of the three atoms A" A2, and Aa. 

energy and barrier rates and is a function of the param
eter a. The minimum value of this sum with respect to 
variations of a will be called the variational rate. 

Available Energy Rate 

The equilibrium rate constant 

kA(a) = RmA(a) j[Al][A2][Aa] 

corresponding to the available energy rate can be 
obtained by combining Eqs. (10) and (12) and elimi
nating the center-of-mass coordinates. The result is 

X dEdladwadm3dcp3dp12drl2dll2dw12dml2dcpl2, (19) 

where gl2 is the electronic degeneracy associated with the 
potential V12, 

Z f= glg2 (27r,u12k T)! (27r,u3k T)! (20) 

is the partition function for AI+A2+Aa in the center
of-mass system, gl and g2 are the electronic degeneracies 
of Al and A2, respectively, 

E= (pIN2Jl.12) + (lIN (2,u12r122) + (N/2,u3) 

+ (lH2Jl.3rS2) + V (21) 

is the total energy of AI+A2+Aa in the center-of-mass 
system, pa is the radial momentum of Aa with respect 
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u~o 

FIG. 3. S~hematic diagram showing limits of integration for 
Eq. (22). 

to A1A2 la is the angular momentum of Aa about 
A1A2, JL;= (ml+1n2)m3/(ml+m2+ma) is the. reduced 
mass of Aa and A1A2, and V is the total potentIal energy 
of Al+A2+Aa, which we assume depends only o~ ~he 
relative positions of the three particles. The remammg 
coordinates are defined in Fig. 2. 

The integral in Eq. (19) is to be taken over the 
surface SA defined by Eq. (14), subject to the condi
tions E~ 0 imposed by the requirement that the energy 
for dissociation be available, and E- V~P122/2JL12+ 
l122/2JL12r122+llj2JLara2, imposed by the requirement 
that the radial kinetic energy of As with respect to 
A1A2 must be positive. The requirement that only 
representative points crossing SA in one direc~ion be 
included has been satisfied in Eq. (19) by takmg the 
factor s defined by Eq. (9) equal to + 1. 

In order to evaluate Eq. (19), it is convenient to 
introduce the angles al and (3a shown in Fig. 2 in place 
of m12 and c/>12' This transformation, for which the 
Jacobian is simply l12 sinal, enables us to express 
the total potential energy V in terms of r12, ra, and at. 
The integration with respect to dEdladmadc/>adwlzd{3a 
may then be carried out in a straightforward manner 
and gives 

kA(a) = (g12/ glg2) 47ra2(2kT /JLa) I! (/1+ /2) rlNr12d cosal, 

(22) 
where 

/1= ![1-(x2+ y+u)]dxdy, O<x2+y<-u, (23a) 

and 

/2= ! exp[ - (x2+y+u) ]dxdy, 

-u<x2+y<b-U12. (23b) 

In the foregoing equations, 

u=V/kT, 

U12= V12/kT, 

b=B/kT, 

x= P12/ (2JL12kT)!, 

y= 1122/2JL12k Tr122. 

The integration of Eq. (23a) is elementary and gives 

1
2[A( -u)s/2+i( -u)!], u<O 

/1= (24) 
~ u>Q 

The integration of Eq. (23b) involves transcen~ental 
functions and is quite complicated. Fortunately, It has 
been found numerically that in all practical cases the 
contribution to the final result arising from /2 is smaller 
than that from Ir, and, therefore, to a first approxi-
mation we can neglect h 

We can now integrate Eq. (22) approximately with 
respect to d COsal. To do this, we divide the range of 
integration into two parts, in which u~O and u~O as 
shown schematically in Fig. 3. We then assume that the 
interaction with Aa varies sufficiently rapidly as a 
function of al so that it will be a reasonable approxi
mation to set U=U12 over the entire range where u~O. 
As a result of this approximation, we obtain 

kA (a) = (glz/ glg2) 81ra2 (2k T / JLa) i ! [A ( - U12) 5/2 
U12<O 

+i( -uhl](cosal_-COSal+)r122dr12' (25) 

To perform the remaining integration over dr12, we 
first observe that the integrand in Eq. (25) has a strong 
maximum in the vicinity of the radius r e, where U12 has 
its minimum. Thus, as a first approximation we can 
expand the potential U12 about rein a Taylor series 

U12= - D12[1-{3122(r12-r e) 2]/kT, (26) 

and evaluate the relatively slowly varying term 
(cosal_ - cosal+) r122 at r e. The remaining integration 
then gives 

kA(a) = (g12/ glg2) 41r2a2r /(312-1( COSal_ -cosal+) T, 

a 
X (2D12/JLa)iL(1/n!) (D12/kT) n-t, (27) 

n~2 

where the angles al_ and al+ are defined in Fig. 3. 
This is the final form of our result. It is identical with 
the ordinary expression for the available energy ratea 
except for the factor (C05al_-COSal+)T" which ac
counts for the fact that particles are excluded from 
regions where the potential is strongly repulsive, and 
the omission in the summation of the terms n= 0 and 1, 
which result from extending integrations over P12 and 
l12 to infinity rather than cutting them off at the dis
sociation limit as we have done. 

The approximations made in obtaining kA(a) are 
expected to be quite good from a physical standpoint, 
and it is believed that no serious errors result from their 
use. Note that a weak van der Waals attraction will not 
affect our result in the high temperature range where it 
will subsequently be used. 

3 R. Fowler and E. A. Guggenheim, StaJistical Thermodynamics 
(Cambridge University Press, Cambridge, England, 1939), 
Chapter XII. 
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Barrier Rate 

The equilibrium rate constant 

kB(a) = RmB(a) /[A1][A2][Aa] 

corresponding to the barrier rate can be obtained by 
combining Eqs. (10) and (12) and eliminating the 
center-of-mass coordinates. The result may be expressed 
in the form, 

kB(a) = (gI2/Z,) fexp( -E/kT) dE (spdl12dwI2+szdpI2drI2) 

X dm12dcpI2dpadradladwadmadcpa, (2S) 

where sp=±l and Sz= (aV/aWI2)/1 av/aWl2 I. The inte
grations are to be carried out over the surface SB 
defined by Eq. (IS) subject to the restriction, 

Sp I a(V - V12)/ar12 I +sz I av/aW12 1·1 apl2/all2 I ~O (29) 

imposed by the requirement that only representative 
points crossing SB in one direction be counted. 

Note that the first and second terms in Eq. (2S) 
give, respectively, the contribution to kB(a) due to 
vibrational and rotational transitions. 

To integrate Eq. (2S) it is convenient to replace 
dEdw12dm12dcp12 in the vibrational term by drl~ald{3ad{312 
and dEdPl2dml2dCP12 in the rotational term by 
dll~ald{33d{312. These transformations, for which the 
Jacobians are, respectively, [a(V- V12)/arI2]112 sinal 
and [a (V - v 12) / aal] (aPt2/ all2 ) 112 sinai COS{312, permit 
the integration over d{3ad{312dpadladwadmadcpa to be carried 
out. The result is 

kB(a) = (g12/g1g2) 47r(SkT/7rU12)!f exp[ - (b+U-UI2)J 

X[I a (U-uI2)/ar12 I r127]1+ I a (U-u12)/aal I I' COS7]IJ 

where 

and 
I' = r12 I ap12/ al12 \. 

As before, U= V /kT, U12= V12/kT, b=B/kT, y= 
llN2,u12kTril. The angle 81 is shown in Fig. 2(b). 

It is interesting to note that Eq. (30) shows 
that if the total potential V is spherically symmetric 
about the center-of-mass of A1A2 (i.e., independent of 
al), then the contribution to the reaction rate from 
rotational transitions is identically zero. 

To proceed further, we must specify the potentials 
V12 and V. Two-body potentials have been determined 
for many molecules from spectroscopic measurements 
and scattering experiments and we can assume V12 is 
known. Three-body potentials are virtually nonexistent, 
however, and we cannot specify V with any degree of 

confidence at all. About the best that can be done is to 
approximate V as the sum of the two-body potentials, 
V12 (r12), Vd rla) , and V23 (r23) , where Via and V23 
represent the interactions of the third body with each 
of the recombining atoms. If V13 and V2a are sufficiently 
short range, then the region of configuration space in 
which they are simultaneously important is small, 
and we can separate kB(a) into two parts, klB(a) and 
k2B(a), corresponding, respectively, to configurations 
in which I Vnl ~ I V23 1 and I V2a l ~ I VIal. Roughly 
speaking klB(a) may be thought of as the contribution 
to kB(a) from collisions of Aa with Al and k2B(a) as the 
contribution from collision of Aa with A2• With these 
approximations, we can write klB(a) in the form, 

klB(a) = (g12/glg2)4?r(SkT/7r,u12)! 

{m2/(ml+m2) J f exp[- (b+uu)] 

X! dUla/ drla ! (7]1 coslh +1' COS7]l sin/h) 

X rla2drl3r122dr~yd cos(h, (31) 

where the integral is to be extended over the region 
I V13 ! ~ ! V231. Note that we have eliminated ra and 
al in favor of r13 and (h. 

The corresponding expression for k2B cal). be obtained 
from Eq. (31) by simply interchanging the subscripts 
1 and 2. 

The integration over d COSOI may now be performed 
and gives 

klB (a) = (g12/ g~2) 7r2(SkT /7r,u12)! 

and 

jl= 

X [m2/ (ml+~)] f exp[ - (b+Ula) J \ dun/dr131 

X ( jp +'Y:tl) (1 +1'2) -1r132dr13r122drI2dy, (32) 

tan81m 
1-

1 
I (2/ 7r) ! tan-I[ (1 +1'2) i tan7]lm] 

tanOlm 

- (1 +1'2) !7]lm sin281m }, 1'2 tan281m~ 1 

tanOlm /) { [( ")' ] 1- -I 1(2 7r tan-1 1+1'·' tan7]lm 
tanOlm 

+{ 1 +1'2) l COS281m}, 
1'2 tan7]lm 

tanOlm 
1----

I tanOlm I' 

(33a) 

(33b) 

Downloaded 07 Dec 2011 to 129.10.124.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1040 JAMES C. KECK 

FIG. 4. Schematic diagram showing limits of integration for 
Eq. (31). The primed and unprimed quantities refer to the two 
cases given in Eq. (34). 

The angle 81m is defined by the relations, 

[(ri- r12- r132) /2rIr13]V13=V23> 
(r3)V13=V232':a 

[(a2-r12- r132) / 2r1r13]V!3=V23' 
(r3)y13-V28~a. 

and is shown in Fig. 4 for the two cases indicated. 

(34) 

The functions Jp and h are essentially the effective 
solid angles over which Aa induces vibrational and 
rotational transitions. They are roughly of the form 
(1- cos8lm) and are shown in Fig. 5 as a function of 
81m for several values of 1'2. As one might expect the 
derivative of Jp with respect to 81m has maxima in the 
neighborhood of 45° and 135°, indicating that vibra
tional transitions are most important at these angles, 

2.0 

1.8 
--- f~ 

1.6 --f1 

1.4 

1.2 

1.0 ,.,.-;-

.8 /=?/j;/ 

.6 ,1/_· 

.4 1/;1/ 
I If 

90 120 150 180 

elm 
FIG. 5. Curves showing the function Ip and II defined by Eqs. 

(33a) and (33b). 

while the derivative of JI has a maximum at 90°, 
indicating that rotational transitions are most import
ant at this angle. Also note that for all values of 1'2, 
except infinity, there are finite regions in which JI has 
zero derivative, indicating that rotational transitions 
are forbidden. 

We now assume that the potential V13 has the form 
shown in Fig. 6(a), i.e., it is strongly repulsive for 
small separations and has a weak van der Waals attrac
tion at larger separations. The factor / dU13/dr13/ 
exp( -U1a) will thus have the form shown in Fig. 6(b). 
Note that there are two strong maxima at separations 
al+ and al- defined by the condition, 

(d/dr13)[/ dU1a/drIa/ exp(-u13)]al±=0 (35) 

o ~----~.-~~~--------~ 
-E 

(a) 

(b) 

FIG. 6. Part (a) shows the form of the interaction potential 
V13. Part (b) shows the maxima in the function I dU13/dr13 I 
exp( -U13). 

and separated by a zero at O'm where U13 has its mini
mum. The integration over r13 can thus be divided into 
two parts O~r13~O'm and O'm~r13~ <Xl. Since the factor 
(Jp+'Y2jI) r132 varies relatively slowly we may evaluate 
it a1- in the part O~r13~O'm and a1+ in the part O'm~ 
r13~ <Xl and factor the integrand. The remaining inte
gration is elementary and gives 

k1B( a) = (gI2/ grg2)1I'2(8kT /1I'}L12)![m./ (ml+m2)] 

X {a1_2Il_ exp(~/kT) +a1+2I1+[exp(~/kT) -1]J, (36) 

where 

Note that in performing the r13 integration above we 
have assumed there is an equilibrium population of 
A1Aa bound by the van der Waals potential. This 
implies that the rate-limiting step in the chain 

A1+Aa+X-7A1Aa+X 

A2+A1Aa-7A2A1+Ag 
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is the latter reaction. This is almost certainly true 
when E/kT;Sl. 

At this point, we may check our results against those 
obtained by Wigner for the case where the surface 
separating free and bound states was taken as H12= O. 
To do this, we simply set b= 0 and neglect the van der 
Waals attraction, i.e., set f= O. The integration over 
dy may then be carried out and gives 

ktw = (g12/ glg2) [87r2at_2/ (27r!L12kT)!] 

X [mJ(m1+m2)]1 1 V12 1 (1-COS01m)r122dr12' (38) 
V12<O 

By adding to this the corresponding expression for k2
w, 

we obtain the Wigner result, 

kw= (g12/ glg2) 47ra1_2(27r!L1JkT)!1 1 V 12 1 
V12<O 

X[(1/mt) (1-COsOtm) + (1/m2) (1-COs02m) ]rtNrI2. 

(39) 

In the present calculation, we wish to include the 
effects of the rotational barrier explicitly. To do this, 
we carry out an approximate integration with respect 
to dy using a technique previously employed in the 
integration of Eq. (32). We first make a change of 
variables introducing the position of the rotational 
barrier, z, in place of y. Equation (37) can then be 
written 

I 1±= {to e-b 1 db/dz I[Fpl±(z)+F/±(z)](Z-Zl)z2dz, 
z'" 

(40) 
where 

Fpl±(Z) = (Z-Zt)-l[ (fp)a!±(1+'Y2)-ldr12 (41a) 
'1 

and 

Fjl±(Z) = (z- Zl) -It 1'2 ( It) a1±(1 +1'2) -!drt2. (41b) 
zl 

The range of integration for Eq. (40) is defined by the 
requirement that a rotational barrier exist. For many 
potentials, this is only true if the angular momentum 
112 is less than some maximum value 1m. If Zm is the 
position of the rotational barrier corresponding to 1m , 

112~lm implies Z~Zm. The range of integration for Eqs. 
(41a) and (41b) is defined by the requirement that the 
effective potential at rJ2 must be less than the barrier 
height, so that the radial momentum P12 will be real. 
Thus, Zl is defined as a function of z by the equation 

UI2(Zl) + (z3/2z12) (du1JdrI2) 1.= U12(z) 

+tZ(du12/drI2)lz' (42) 

We now make the assumption that b increases strongly 
with decreasing z, so that the factor 1 db/dz 1 exp( -b) 

in the integrand has a sharp maximum at a radius Z2 
defined by the condition, 

(d/dz) [I db/dz I exp( -b) JZ2= 0, (43) 

while the remainder of the integrand varies sufficiently 
slowly so that it may be approximated by its value at 
Z2. The integral may then be factored and integrated 
with respect to dz. The result is 

It±= [Fpl±(Z2) + F II±(Z2) J(Z2- Zl) Z22 

X[1-exp(-B m/kT)], (44) 

where Bm is the maximum value of B and corresponds 
to Zm. Our final result is obtained by inserting Eq. (44) 
into Eq. (36) and adding the corresponding expression 
for k2B (a). Thus, 

kB (a) = (g12/ glg2) 27r(27r!L12kT) !(Z2- Zl) Z22 

X[1-exp( -Bm/kT)] 

X {mt-I(al_2(F/-(Z2) +F/-(Z2)) exp(E/kT) 

+at+2(F/+(Z2) +Fjl+(Z2) ) [exp(f/kT) -1]l 

+m2-1[~_2(Fp2-(Z2) + Ffl-(Z2) ) exp(E/kT) 

+~2(Fp2+(Z2) +Fj2+(Z2)) [exp (f/k T) -1JI}. (45) 

This is a rather formidable expression, but considering 
the complexity of the problem we might have expected 
worse. Actually, the only real complication is that 
involved in integrating Eq. (41a) and (41b) to obtain 
the F's. This must be done either graphically or 
numerically. In cases where a rough estimate of the 
rate will suffice, the F's may be taken equal to unity. 

The most important difference between the calcula
tion made above and the one carried out by Wigner is 
that we have included explicitly, both the effect of the 
rotational barrier and the van der Waals force. This 
leads to a considerably more complicated temperature 
dependence than the simple y-! law found by Wigner, 
as well as a substantial reduction in the rate constant 
at low temperatures. 

It is worth nothing that our expression for the barrier 
rate constant contains a good deal of the correct me
chanics of the problem. What is missing is the con
sideration of trajectories which cross SB more than 
once. 

Variational Rate 

To obtain the variational rate constant kV(a) we 
simply add the available energy rate constant kA(a) 
and the "barrier" rate constant kB(a), and minimize 
with respect to variations of the parameter a. While in 
principle this can be done analytically, in practice it has 
been found more convenient to simply calculate kA(a) + 
kB(a) for several values of a and locate the minimum 
graphically. 

The actual calculations of kA(a) and kB(a) were 
programmed for an IBM 650 computer for which this 

Downloaded 07 Dec 2011 to 129.10.124.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1042 JAMES C. KECK 

kT/O=3 

1.0 

.5 

N 
I 

'" CII 0 
:> kT/O= I 
u 3 
CII 

0 
e 

2 -l~v-
ID 
e 
u 

'u 
CII 
OJ 

0 
<t 

kT/O =.3 .... 
0 10 
)( 

-'" 

5 

°0~--~.2~~~.4~--~.6~--.78--~1.70--~1~.2~ 

(0_ +~ml2l 
FIG. 7. Curves illustrating the method used to determine the 

variational rate constant k V for the process O+O+A=O, 
(3~0 -) + A for several values of kT / D where D is the binding energy 
of 0,('2: 0-), Note that, as kT /D increases, the position of the 
minimum corresponding to the "variational" rate constant moves 
from a=O toward a=a_+zm /2, beyond which point the "barrier" 
rate constant kB(a) is eS8entially O. 

problem is trivial. Only the case of symmetrical mole
cules, i.e., Al = A2, was treated, and the interaction 
potential V I2 was assumed to have the Morse form. A 
detailed discussion of this potential and a summary 
of the constants employed is given in part I of Ap
pendix A. The potential V13 between the third body 
and a recombining atom was assumed to have the 
Lennard-Jones form at large separation and the 
Mason-Vanderslice4 form at small separation. The two 
forms were smoothed graphically in the region of 
overlap. A detailed discussion of these potentials and a 
summary of the parameters used is given in parts II 
and III of Appendix A. 

Some typical results, which serve to illustrate the 
procedure for locating the minimum rate constant are 
shown in Fig. 7 for the case 

O+O+A~02(31;g-) +A. 
In this figure, the rate constants kA(a), kB(a) and 
kA(a) +kB(a) are plotted as functions of a2/(a_ +zm/2)2 
for several values of the dimensionless temperature 
kT/D. It can be seen that for kT/D«l the best 
value of a/(a_+zm/2) is zero, in which case kV,,=,kS(O), 
while for kT/D»l the best value of a/(a_+zm/2) is 

4 E. A. Mason and J. T. Vanderslice, J. Chern. Phys. 28, 432 
(1958). 

unity, in which case kV"='kA(a_+zm/2). As shown in 
Fig. 8, the transition region in which kA(a) and kB(a) 
are simultaneously important is relatively narrow, 
and in practice kv can easily be interpolated so that it is 
unnecessary to carry out the detailed analysis illu
strated in Fig. 7. 

An analysis similar to that just described was also 
carried out for the case, 

and the results were essentially identical except that 
the crossing point for kB(O) and kA(a_+zm/2) oc
curred at kT/D=3. 

From a practical point of view, the temperature 
range of primary interest is that for which kT/D<1. 
Since the preceding analysis showed that in this range 
kv = kB(O) for both iodine and oxygen, it seems fairly 
safe to conclude that this will be the case in general and, 
thus, the properties of the "barrier" rate constant are of 
special importance. In this connection, it is of interest 
to compare the relative contributions to kB(O) made 
by vibrational and rotational transitions. This is done 
in Fig. 9, where kpB(O) and k/B(O) are plotted along 
with kB(O) as functions of kT/D. It can be seen that at 
low temperatures the major contribution to kB(O) 
arises from kpB(O) , while at high temperatures the 
major contribution is from k/S(O). The ratio of 
k/B(O)/kpB(O) varies approximately as Ti, and it can 
be shown that this is a result of including the effect of 
the rotational barrier in the calculations. In the Wigner 
calculation, which neglects the rotational barrier, 
there is no difference in the temperature dependence of 
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FIG. 8. The curve labeled k v shows the variational rate con
stant for the process 0+0+A=O,(,1: 0-)+A as a function of 
kT/D, where D is the binding energy of 0,(31:0-), The curves 
labeled kB(O) and kA (a_+zm /2) are, respectively, the low and 
high temperature asymptotes for k v. Note that k v is quite well 
approximated by the smaller of kB(O) and kA (a_+zm /2) and can 
easily be interpolated in the transition region. 
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the vibrational and rotational contributions. The 
reason for pointing out this effect is that, as will be 
seen later, the experiments show a stronger negative 
temperature dependence than the theory, and it is 
tempting to speculate that at least part of the difference 
may be due to the fact that rotational transitions are 
less important than the theory predicts. This would be 
the case if the true three-body potential were more 
nearly spherically symmetric than the dumbbell shape 
assumed. 

Figure 9 also shows that the barrier rate constant 
is a considerably better bound than the Wigner rate 
constant, especially at low temperatures. This is a 
simple result of the fact that the rotational barrier 
limits the number of trajectories which can reach the 
surface H12= 0 from the free state. An interesting pro
ject would be to calculate this correction. It would also 
be of interest to consider the general case where H12 

is set equal to an arbitrary constant. This would give 
bounds on the frequency of vibrational and rotational 
transitions in molecules. 

IV. ELECTRONIC TRANSITIONS 

Before we can make a meaningful comparison of 
theory and experiment, we must first consider the 
effect of transitions between the various bound elec
tronic states of a molecule, which are degenerate 
in the free state. This is necessary because what is 
usually measured in experiments is either the de
population of the free state or the population of the 
ground state, and the existence of intermediate elec
tronic states can provide alternative paths by which 
this can occur. Such a path is the chain reaction, 

kfi 
A+A+M __ A2i+M 

kiO 

A2i+X __ A2+X, 

(46a) 

(46b) 

where A2i denotes a molecule in an intermediate 
electronic state. 

The general solution of these equations involves 
considerable complication and will not be undertaken 
here. Instead, we shall consider the two limiting cases 
in which either the reaction, 

kif 

A2i+M __ A+A+M, (47a) 

or the reaction 

(47b) 

dominates in depopulating A2i. If reaction (47a) is 
dominant, then we may assume reaction (46a) is m 
equilibrium and the over-all reaction rate is 
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FIG. 9. Recombination rate constants for O+O+A ...... 0 2 
(3~a-)+A. The curve labeled kB(O) shows the "barrier" rate 
constant evaluated for a=O. The curves labeled kpB(O) and 
ktB(O) show, respectively, the contributions to kB(O) due to vi
brational and rotational transitions. Note that at low tempera
tures vibrational transitions are dominant, while at high tempera
tures rotational transitions are dominant. The curve labeled kw 
shows the Wigner rate constant for comparison. 

where 

is the effective three-body rate constant for the over-all 
reaction with Iv! as the third body and Kfi is the 
equilibrium constant for reaction (47a). If the reaction 
(47b) is dominant, then we can assume A2i is in a 
steady state of near zero concentration, and the over-all 
reaction rate is 

(SO) 

Thus, we see that the rate-limiting rate constant is the 
smaller of kfi and k/ iO • 

For our subsequent discussion, it is convenient to 
express k/ iO in terms of the cross section u. for elec
tronic transitions, from the intermediate to ground 
state. A straightforward calculation involving es
sentially only the evaluation of KJi leads to the result, 

kJiO= u.(2DJ)J.) i(gJgJ) (81l'rNf3.hd[XJ/[MJ)' (51) 

where 

Xi= 2 (hcw./Di) [cosh(D;lkT) -lJ 

[l-exp(-hcwJkT)J-l (52) 

is a dimensionless factor shown as a function of tem
perature in Fig. 10, gil gJ is the ratio of the electronic 
degeneracy of the intermediate and free states, and )J. 

is the reduced mass for a collision of A2 and X. The 
constants D., Wi, ri, and f3i are, respectively, the 
binding energy, vibrational constant, equilibrium 
separation, and decay constant for A2i and are tabu
lated in Appendix A for a few molecules of interest. 

Downloaded 07 Dec 2011 to 129.10.124.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1044 JAMES C. KECK 

x 

~= 01 o . 

8 = kT/D 

FlO. 10. Curves of the function x, defined in Eq. (53), as a 
function of kT/D for two values of the parameter hew/D. This 
function determines the temperature dependence of recombina
tion via the chain mechanism (46) in cases where the electronic 
transition is the rate-limiting step. The left scale should be used 
for the two curves on the left and the right scale for the two 
curves on the right. 

To obtain numerical values for kjiO, we require 
a knowledge of the cross section 0'. for electronic transi
tions from the intermediate to ground state. These 
transitions usually involve spin flips and are expected 
to be very improbable except in cases where atom 
exchange occurs. Fortunately, due to the exceedingly 
steep temperature dependence of the factor Xi, all we 
need for our present purposes is an estimate of the 
cross section good to one, or two orders of magnitude. 
We have, therefore, assumed that only atoms of the 
recombining species induce electronic transitions and 
that the cross section for the reaction is of the order of 
gol gj times the kinetic cross section. The factor gol gj 
is the ratio of the electronic degeneracy of the ground 
and free states, and is included on the loose argument 
that for a reaction to occur the reacting atoms must be 
appropriately oriented. The only other unknown factor 
in kjiO is the ratio [X]/[M] which, with our assump
tion that X=A, is time-dependent. Again, because 
of the extremely steep temperature dependence of*the 
factor Xi, this complication can be glossed over for the 
present and we have simply taken [XJ/[M] = 10-2, 

which is typical of all the experiments we shall discuss. 

V. COMPARISON OF THEORY AND EXPERIMENT 

Temperature Dependence 

The rate constants for recombination of iodine, 
bromine, oxygen, and nitrogen atoms in the .presence 

of argon have been calculated as a function of the 
temperature for both the direct and chain mechanisms 
and are shown in Figs. 11-14 along with the available 
experimental data. The curves labeled f-tO, f-t1, etc., 
refer to direct recombination of atoms into the bound 
electronic states, 1, 2, etc., identified in the figures. 
The curves labeled 1-t0, 2-tO, etc., refer to recombina
tion to the ground state via the chain mechanism 
under conditions where the rate-limiting step is as
sumed to be the transition between electronic states. 
In this connection, note that the curves are shown as 
solid lines where the corresponding process is the rate
limiting step and are dashed otherwise. Also, note that 
the crossing points are uncertain due to our ignorance 
of the cross sections for electronic transitions, although 
a change of one or two orders of magnitude is required 
to produce an appreciable effect. The curves labeled ~ 
represent the sum of all processes leading to the ground 
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FlO. 11. Three-body recombination rate constants for 1+1+ 
A-->12+A as a function of kT/Do, where Do is the binding energy 
of 12(1~.+). The curves labeledf--->O(~) andf-->1 are the rate con
stants for direct recombination to the 1~.+ and 3ITlu states of h 
These curves have been cut off at ./kT= 1, where E is the depth 
of the van der Waals potential, since the theory is no longer ap
plicable below this point. The curve labeled 1--->0 is an estimate of 
the effective rate constant for transitions from the 3IIIu to the 
I~g+ state. Note that in the range ./kT:5.1 the transition 1--->0 is 
always the rate-limiting step for recombination to the 0 state 
via the chain mechanism Eq. (46). To indicate this, we have used 
a solid line for the curve 1--->0 and a dashed line for the curve 
f--->1. Curve (1) shows the low temperature experimental data 
obtained in flash photolysis experiments.6•6 Curve (2) shows the 
high temperature recombination rate constants deduced from 
dissociation rates measured in shock tubes. 7 The experimental 
data lie very close to the theoretical upper boundf--->1(~) at low 
temperatures but exhibit a steeper temperature dependence than 
the theory. Possible explanations for this are discussed in the text. 

& D. L. Bunker and N. Davidson, J. Am. Chern. Soc. 80, 5085 
(1958). 

6 Strong, Chien, Grai, and Willard, J. Chern. Phys. 26, 1287 
(1957). 

7 Britton, Davidson, Gehman, and Schott, J. Chern. Phys. 25, 
804 (1956). 
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state, and it is these with which the experimental data 
should be compared. 

In making the comparison of theory and experiment, 
it should be remembered that the theory gives a 
rigorous upper bound to the rate constant. Thus, we 
expect the observed rate constants to fall below the 2; 

curves. It is interesting to note that at low temperatures 
all the experimental data lie quite close to the theo
retical bound. This is shown more clearly in Fig. 15 
where we have plotted the ratio of the observed rate 
constants to the upper bound represented by the 2; 

curve as a function of kT/Do, where Do is the binding 
energy of the ground state. Although points for oxygen 
and nitrogen and a portion of the bromine curve 
actually lie above the bound, this is not considered 
serious, since a rather large error is quoted for the 
oxygen result, the nitrogen result disagrees with an
other measurement, and the bromine data are uncor-
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FIG. 12. Recombination rate constants for Br+Br+A->Br.+A 
as a function of kT / Do, where Do is the binding energy of Br. 
('2:.+). The curves markedf->O andf->l are the rate constants 
for direct recombination to the '2:.+ and 3I1,u states of Br. These 
curves have been cut off at the point ./kT= 1, where. is the 
depth of the van der Waals potential, since the theory is no 
longer applicable below this point. The curve labeled 1->0 is an 
estimate of the effective rate constant for transitions from the 
3I1,u to the 12:.+ state. The portions of the curves shown as solid 
lines indicate the regions in which the corresponding process is 
the rate-limiting step in recombination to the 0 state via the 
chain mechanism, Eq. (46). The curve labeled 2: shows the rate 
constant for recombination to the 0 state via both direct and 
chain mechanisms. Curve (3) shows the low temperature experi
mental data obtained in flash photolysis experiments. s Curve (4) 
shows the high temperature recombination rate constants de
duced from dissociation rates measured in shock tubes.a .• Although 
the experimental rate constant exceeds the theoretical upper 
bound 2: at low temperatures, there is a strong possibility that 
the experimental results may be high, and this is not regarded as 
a serious disagreement. As in the case of iodine, the experimental 
data show a steeper temperature dependence than the theoretical 
bound. Reasons for this are discussed in the text. 

a D. Britton and N. Davidson, J. Chern. Phys. 25,810 (1956). 
9 H. B. Palmer and D. F. Hornig, J. Chern. Phys. 26, 98 (1957). 
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FIG. 13. Three-body recombination rate constants for 0+0+ 
A->O.+A as a function of kT/Do, where Do is the binding energy 
of 0.(32:.-). The curves labeledf->O,f->l, f->2, andf->3 are the 
rate constants for direct recombination to the 32:.-, 1.6.., I~., and 
32:u+ states of 0 •. The curves labeled 1-.0, 2->0, and 3->0 are 
estimates of the effective rate constants for transitions from the 
1.6.., 12:., and 32:u + to the 32:.- state. The portions of the curves 
shown as solid lines indicate the regions in which the correspond
ing process in the rate-limiting step in recombination to the 0 
state via the chain mechanism Eq. (46). The curve labeled 2: 
shows the rate constant for recombination to the 0 state via both 
direct and chain mechanisms. The point (5) shows the result of 
discharge experiments in which the atom concentration was de
termined from the photon yield of the reaction O+NO->NO.+ 
hv.IO The curve (6) shows the recombination rate constant de
duced from dissociation rates measured in shock tubes,u·I' 
Although the experimental point at low temperatures is some
what above the theoretical bound 2:, the error quoted is quite 
large and the discrepancy is not considered significant. As in the 
cases of iodine and bromine, the experimental data show a steeper 
temperature dependence than the theoretical bound. Reasons for 
this are discussed in the text. 

rected for the effect of Br2 as catalyst and are expected 
to be "high." 

Assuming our approximation to the three-body 
potential is at all reasonable, we can draw the tenta
tive conclusion that recrossing of the "barrier" surface 
by single trajectories, (i.e., recombination and dis
sociation in a single collision) is a small effect at low 
temperatures. This would not be an unreasonable 
thing to expect, since at low temperatures, the phase 
volume associated with bound states tremendously 
outweighs that associated with free states and, thus, a 
trajectory which once crosses the barrier surface has a 
good chance of coming out in a bound state. 

At high temperatures, the observations do fall some
what below the theoretical bound. The interesting 
feature to note in this region is that the ratios of k •• p/kl; 
for all the species studied appear to lie more or less on 
a smooth curve when plotted as a function of kT/Do. 

10 C. B. Kretschmer, Aerojet Report 1611, Azusa, California, 
(1959). 

11 S. R. Byron, J. Chern. Phys. 30, 1380 (1959). 
I'M. Camac, private communication. 
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FIG. 14. Three-body recombination rate constants for N+N+ 
A->N.+A as a function of kT I Do, where Do is the binding energy 
of N.('~g+). The curves labeled f->O and f->l are the rate con
stants for direct recombination to the I~g+ and 3~g+ states of N •. 
The curve labeled 1->0 is an estimate of the effective rate con
stants for transition from the 3~g+ to the I~g+ state. The portions 
of the curves shown as solid lines indicate the regions in which 
the corresponding process is the rate-limiting step in recombina
tion to the 0 state via the chain mechanism Eq. (46). The curve 
labeled ~ shows the rate constant for recombination to the 0 
state via both direct and chain mechanisms. The points (7) and 
(8) show the results of flow experiments in which the atom 
concentration was determined by titrating with NO.13.14 The two 
experiments give values which bracket the theoretical upper 
bound~. 

This suggests that the mechanism responsible for de
pressing the observed rate constant below the theo
retical bound depends in the first approximation 
only on the binding energy of the ground state. It is 
not surprising that the correlation should be with the 
ground state binding energy since for iodine, bromine, 
and oxygen the ground state plays the dominant role. 
At the present time, it does not seem unreasonable to 
suppose that other molecules will exhibit a similar 
departure from the theoretical upper bound, and thus, 
we may use the observed correlation as a basis for 
making fairly precise theoretical predictions of recom
bination rates. In this connection, it will be of con
siderable interest to see if the recombination rate of 
nitrogen atoms follows the same pattern at high tem
peratures. Note, however, that in nitrogen a correction 
may have to be made for the increased importance of 
recombination via the chain mechanism. 

There are two possible explanations for the decrease 
in the ratio of k.xp/k}; with increasing temperature: 

First, multiple crossings of the barrier surface can be 
expected to become more important as the temperature 
increases. Since this is an effect which is probably 

13 Herron, Franklin, Bradt, and Dibeler, J. Chem. Phys. 30, 
879 (1959). 

14 Hartech, Reeves, and Mannella, J. Chem. Phys. 29, 608 
(1958). 

associated with the ratio of free to bound states, it is 
reasonable to expect a dependence on kT/Do• The 
question of whether this effect is important is one which 
could be answered quite easily by Monte Carlo tra
jectory calculations, and it is proposed as a very 
important problem for those working in this area. 

Second, our approximation to the three-body po
tential is certainly rather poor. As an example of how 
the three-body potential can affect the temperature 
dependence of the rate constant, we recall the previous 
discussion of the difference in the temperature de
pendence of rotational and vibrational transitions. In 
this discussion, it was noted that the major contribu
tion to the rate constant at high temperatures came 
from rotational transitions and that these are de
pendent on the asymmetry of the three-body potential. 
A more nearly symmetric potential would result in a 
smaller contribution from rotational transitions and, 
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FIG. 15. Ratio of experimental three-body recombination rate 
constants k. xp to theoretical upper bounds k}; as a function of 
kT IDo, where Do is the ground state binding energy. In all cases, 
the third body is argon. Curve (1) summarizes the results of 
flash photolysis experiments on recombination of iodine atoms.6.6 
Curve (2) summarizes the results of shock tube experiments on 
the dissociation of iodine.' Curve (3) summarizes the results of 
flash photolysis experiments on the recombination of bromine 
atoms. 6 Curve (4) summarizes the results of shock tube experi
ments on the dissociation of bromine.s,> Point (5) is the result of 
discharge experiments on the recombination of oxygen atoms in 
which the atom concentration was determined from the photon 
yield of the reaction NO+O->NO.+hv. 'O Curve (6) summarizes 
the results of shock tube experiments on the dissociation of 
oxygen.U •12 Points (7) and (8) are the results of flow experiments 
on the recombination of nitrogen atoms in which the atom con
centration was determined by titrating with NO.13,14 At low 
temperatures, the experimental results scatter about the theo
retical upper bound. The fact that some of the data lie slightly 
above the bound is not considered serious at present due to the 
likelihood of experimental errors of this magnitude. At high 
temperatures, the experimental data fall away from the bound in 
a more-or-less smooth manner, which suggests that the mech
anism responsible is nonspecific and may well be the same for all 
molecules. If this is the case, the theory can be empirically cor
rected to give recombination rate constants to about a factor of 2. 
Possible explanations of this effect and suggestions for improving 
the theory are given in the text. 
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hence, a steeper temperature dependence of the rate 
constant. 

The above discussion suggests that the study of 
reaction rates can be a means of investigating three
body potentials. A possible approach to the problem 
would be to represent the three-body interaction as an 
expansion in cylindrical harmonics with unknown 
coefficients to be determined by comparison with 
experiment. It is reasonable to suppose that such an 
expansion would converge rapidly so the number of 
undetermined coefficients might be quite small. It 
would be of considerable interest to observe the form 
of the various terms in the expansion. We already know, 
for example, that there would be no rotational con
tribution from the spherically symmetric part. 

Atomic Number Dependence 

A further comparison of theory and experiment is 
shown in Table I in which we have compared the 
theoretical bounds with the experimental rate con
stants for the recombination of iodine in the presence 
of noble gases. lo •16 The results of two experiments are 
shown, and it can be seen that the theory reproduces 
the trend of the observations almost perfectly. Al
though the observations are slightly higher than the 
bound given by the theory, the discrepancy is probably 
within the experimental error. Furthermore, a com
parison of the tabulated argon results with more recent 
results, shown graphically in Fig. 11, indicates that the 
tabulated values may be slightly high. 

It should be noted that the increase in the theo
retical rate constant with atomic number is not a mass 
but a size effect. The theory is independent of the mass 
of the third body. The mass effect results in a decrease 
of the rate constant with increasing atomic number due 
to the slower velocity of the heavier particles. At room 
temperature, where the observations were made, the 
size effect is governed almost entirely by the van der 
Waals force, and since this was interpolated from 
measurements on noble gases there is room for improve
ment here. 

At this point, it seems appropriate to inject a few 
remarks on the probable effect of other third bodies on 
the recombination reaction. It was already noted that 
the theoretical rate constants are independent of third 
body mass. They are also independent of the internal 
complexity of the third body as long as its internal state 
does not affect the external force field. We expect the 
present theory to share the success of the Bunker and 
Davidson theoryl7 in explaining the relative efficiencies 
of complex catalysts at low temperatures since the van 
der Waals force enters in much the same way. It is also 

I. Christie, Harrison, Norrish, and Porter, Proc. Roy. Soc. 
(London) A231, 446 (1955). 

16 K. E. Russell and J. Simons, Proc. Roy. Soc. (London) A217, 
271 (1953). 

17 D. L. Bunker and N. Davidson, J. Am. Chern. Soc. 80, 5090 
(1958). 

TABLE I. Comparison of theoretical upper bounds, k!, with ob
served rate constants for recombination of iodine atoms in the 
presence of noble gases. The observations are those of Christie, 
Harrison, Norrish, and Porter,!5 kCHNP, and Russell and Simons,16 
kRB• The theoretical bounds reproduce the trend of the observa
tions to the accuracy with which the two experiments agree. Al
though the observed rate constants are slightly higher than the 
bounds, the discrepancy is probably within the experimental 
errors. The units are 10-33 sec-I cm6 molecules-2• 

Catalyst k! kCHNP k RS kCHNP/k! kRS/k! 

He 3.0 3.4 4.7 1.1 1.6 
Ne 4.3 4.6 5.0 1.1 1.2 
A 7.5 9.2 10.0 1.2 1.4 
Kr 9.1 11.3 1.2 
Xe 11.4 15.0 1.3 

expected that attractive atoms will have a somewhat 
higher intrinsic efficiency as third bodies than repulsive 
ones since a larger region of configuration space is 
open to them. It should be noted, however, that in 
most cases the electronic degeneracy of attractive 
configurations is small compared to that of repulsive 
configurations so the over-all effect on the rate constant 
will be considerably diminished. The important effect 
in connection with attractive atoms is expected to be 
their ability to induce electronic transitions between 
the various bound states of a molecule by exchange 
collisions. Attractive third bodies with internal degrees 
of freedom have not been considered in any detail, but 
they should be very efficient due to the high probability 
of forming long-lived complexes. 

VI. CONCLUDING REMARKS 

Considering the simple "trial" surface used and the 
crude approximation to the three-body potential 
assumed, the comparison between theory and experi
ment is quite encouraging. At low temperatures, the 
observed recombination rate constants lie very near the 
predicted upper bounds, while at high temperatures 
they fall away from the bounds in a relatively smooth 
manner that can be qualitatively explained in terms 
of various approximations contained in the theory. 
Among the most important problems requiring investi
gation in connection with these approximations are: 
(1) the representation of the three-body potential, 
(2) the effect of multiple crossing of the "trial" surface 
by single trajectories, and (3) the treatment of elec
tronic transitions between bound states. Improvement 
in the treatment of all these problems is certainly 
feasible, and some possible approaches have been 
mentioned. There is also the possibility of reducing the 
theoretical bound through the systematic investigation 
of other and perhaps more complicated trial surfaces. 
In view of the many opportunities available for re
finement of the theory', it does not seem unreasonable 
to hope that a very satisfactory description of three
body recombination and dissociation can be obtained 
with the present approach. 
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TABLE II. Summary of parameters for the Morse potential.-

DM/k {3M r. w 
Molecule fA State oK A-I A {3Mr. cm-1 

N2 7 12:
0
+ 1.155 2.69 1.09 2.94 2360 

32:u+ 4.254 2.74 1.29 3.54 1460 

O2 8 32:.- 6.014 2.65 1. 21 3.20 1580 
lli. 4.864 2.82 1.22 3.42 1509 
12:.+ 4.114 2.93 1.23 3.59 1433 
32:u+ 8.163 3.74 1.42 5.3 819 

Br! 40 12:.+ 2.314 1.94 2.28 4.44 323 
3IIIu 3.243 2.80 3.1 8.7 171 

I2 63.5 12:.+ 1. 814 1.86 2.67 4.96 215 
3II1u 9.652 1.66 5.9 9.8 44 
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a G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Company, 8 
Inc., Princeton, New Jersey, 1950). 6 

In concluding, we should like to point out the rela
tionship of the present variational theory of reaction 
rates to the "statistical" theory previously proposed 
by the author.! The two theories are in a sense com
plimentary, since the trial surfaces of the variational 
theory form appropriate boundaries for the collision 
complex of the statistical theory. In fact, it was the 
problem of defining the boundaries of the collision 
complex which led to the development of the varia
tional theory. Coupling of the two theories provides 
a reasonable method for estimating the rate constants 
in cases where two or more trial surfaces are found 
which give comparable bounds to the reaction rate. 
For example, we have already employed the ideas of 
the statistical theory in a qualitative manner in arguing 
that multiple crossing of the barrier surface by single 
trajectories should be unimportant at low tempera
tures. However, because the statistical theory is non-

2DMrJ~r-------------------------, 

3 5 7 9 II 13 15 17 
r 

FIG. 16. Curves showing effective Morse potential for several 
values of angular momentum. 
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FIG. 17. Curves relate various parameters identified in Fig. 16. 
The curve labeled (- V /D) was obtained from Eq. (AI). The 
curves labeled B/D were obtained by substituting Eq. (Al) into 
Eq. (16). The curve labeled Bm/D is the locus of the maxima of 
the B / D curves. 

rigorous and leads to involved calculations, it is felt 
that quantitative treatment of the coupling problem 
should await the solution to the more important 
problems in connection with the variational theory. 
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FIG. 18. Curves showing the relation between position Zz of the 
maximum in the function I dB/dz I exp(-B/kT) and the tem
perature T. The curves were obtained by combining Eqs. (AI), 
(16), and (43). 
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APPENDIX 

I. Morse Potential 

The Morse potential is described by the equation, 

VM(r)=DM{{l-exp[ -~M(r-re)]F-1}. (A1) 

The. corresponding effective potential is 

(A2) 

where l is the angular momentum of the molecules and 
the constants DM, ~M' r., and p. are tabulated for the 

TABLE III. Summary of parameters for Mason-Vanderslice 
potential. 

Atom A DMv/k OK {jMV A-I a 

He 4 4.116 4.83 1.50 
Ne 20 1.587 4.24 1.54 
A 40 1.537 3.10 2.18 
Kr 84 2.387 2.74 2.39 
Xe 131 2.7F 2.38 2.24 
N 14 4.966 2.84 1.55 
0 16 5.066 2.67 1.24 
Br 80 1.657 2.31 2.18 
I 127 2.037 2.08 2.31 
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FIG. 20. Mason-Vanderslice potential for several values of the 
parameter a. The curves are plots of Eq. (A3) with {j' = (jMV. 

molecular states of interest in the present work in 
Table II. The general form of the effective potential 
is shown in Fig. 16 for several values of l. Note there is 
a maximum value of angular momentum lm for which 
the effective potential has a relative minimum. 

Some useful curves relating various parameters 
appearing in the theory are shown in Figs. 17-19. 
These were obtained by inserting Eq. (A1) into the 
defining equations. 

II. Mason-Vanderslice Potential 

For homonuclear interactions, the Mason-Vander
slice potentia14 may be written in the form, 

V MV(r) =DMV exp[-~'r-2a exp( -~'rla)], (A3) 

where 
(A4) 

D MV, ~MV, and a are constants related to the atomic 
properties of the interacting atoms, and a summary 

TABLE IV. Summary of parameters for Lennard-Jones potential. 
The values for the noble gases were taken from reference 19. 
The values for the remaining atoms were obtained by interpolation 
onZ. 

Atom A Z E/k <1" 

He 4 2 10 2.6 
Ne 20 10 33 2.79 
A 40 18 120 3.42 
Kr 84 36 173 3.60 
Xe 131 54 223 4.04 
N 14 7 25 2.7 
0 16 8 30 2.7 
Br 80 35 170 3.6 
I 127 53 220 4.0 
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FIG. 21. Curve showing the relation between the position r of 
the maxima in the function I dVLJ/dr I exp( - VLJ/kT) and the 
temperature T. The curve was obtained by inserting Eq. (AS) 
into Eq. (35). 

of values for the atoms of interest in the present work is 
given in Table III. Note that, since the definition of {3' 
involves V MV, Eq. (A3) gives only an implicit definition 
of V MV and this produces some complication. Fortu
nately, in all cases of interest in the present work, 
VMv/DMv«l and we can, therefore, set {3''''"{3MV 
Figure 20 shows curves of V MV/ DMV for {3' = {3MV as 
a function of (3Mvr for several values of a. At low ener
gies, the curves are all asymptotic to a simple ex
ponential. 

For heteronuclear interactions, Mason and Vander
slice suggest using the geometric mean of the two 

potentials for the homo nuclear interaction of the 
atoms involved. 

To calculate the barrier rate constant, we require 
the value of the separation a_ at which I dV Mv/dr I 
exp( - V Mv/kT) has a maximum. For (3Mvr?:.a, which 
is the case of interest, this occurs to an excellent 
approximation at the point V MV= kT. Thus, for the 
homo nuclear case, a_ may be obtained directly from 
the curves in Fig. 20. For the heteronuclear case, the 
appropriate potential must first be computed in order 
to determine a_. 

III. Lennard-Jones Potential 

To represent the van der Waals interaction, we have 
used the Lennard-Jones potential, which for homo
nuclear interactions has the form, 

The constants ~ and u for the atoms of interest in the 
. present paper are given in Table IV. 

For the heteronuclear interactions, the combination 
rules 

(A6) 

and 
(A7) 

are recommended by Hirschfelder, Curtiss, and Bird.I8 

To calculate the barrier rate constant, we require the 
separations a_ and a+ at which 

I dV LJ/dr I exp( - V LJ/kT) 

has maxima. These may be obtained from the graph 
in Fig. 21 which represents the solution of Eq. (35). 

It should be noted that the values of a_ obtained 
from the Lennard-Jones and Mason-Vanderslice po
tentials do not join smoothly. In the present calcula
tions, smoothing was done graphically. 

18 Hirshfelder, Curtiss, and Bird, Molecular Theory of Gases and 
Liquids (John Wiley & Sons, Inc., New York, 1954). 
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