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I. INTRODUCTION 

The development of theoretical models for describ- 
ing the time evolution of complex reacting systems is 
a fundamental objective of nonequilibrium ther- 
modynamics. It is also of great importance for a 
variety of practical problems related to combustion, 
hypersonic aerodynamics, chemical processing and 
biology. 

Although in principle the equations of motion 
governing the microscopic behavior of such systems 
can be obtained from the laws of quantum mechanics, 
in practice the integration of these equations for ma- 
croscopic systems containing extremely large 
numbers of degrees of freedom is impossible. To cir- 
cumvent this difficulty, Keck and Gillespie ~ proposed 
an alternative approach based on the Second Law of 
Thermodynamics which they originally called the 
rate-controlled partial-equilibrium method. This was 
later renamed rate-controlled constrained equilibrium 
(RCCE) by Galant and Appleton 2 to distinguish it 
from the partial-equilibrium method proposed by 
Bulewicz, James and Sugden 3 and used by a number 
of investigators 4-8 to treat the recombination region of 
the H2/N2/O 2 flames. 

In the RCCE method it is assumed that for many 
practical applications, the evolution of a complex 
system can be described with acceptable accuracy by 
a relatively small number of rate-controlling reactions 
which impose slowly changing constraints on the 
allowed states of the system. It is also assumed, as in 
thermodynamics, that fast reactions exist which relax 
the system to the associated constrained-equilibrium 
state on a time scale short compared to that on which 
the constraints are changing. Under these conditions, 
a nonequilibrium system will relax to its final equi- 
librium state through a sequence of rate-controlled 
constrained-equilibrium states which can be deter- 
mined by maximizing the entropy subject to the in- 
stantaneous values of the constraints. Thus only the 
rate equations for the constraints must be integrated. 
The set of all dissociation-recombination reactions is 
an example of a class of rate-controlling reactions 
important in chemical kinetics. These impose a con- 
straint on the total number of particles in a gas which 
cannot change unless at least one such reaction 
occurs. The results can be systematically improved by 
adding constraints imposed by increasingly faster 
reactions until the required accuracy is achieved. 
When the number of independent constraints 
included equals the number of degrees of freedom of 
the system the method becomes exact. 

The RCCE method has been used with consider- 
able success by Keck and coworkers to investigate the 
formation of air pollutants in combustion products 9-11 
and to calculate ignition delay times for hydrogen 
oxidation)-' It has also been applied by Takeda, Hoshi 
and Matsui ~3 to the homogeneous oxidation of 
hydrogen and methane under constant volume 
adiabatic conditions. A discussion of the method and 
reviews of some prior applications have been given by 

Keck14 and Beretta and Keck. iS.Similar methods have 
been used by: Alberty 16 and Oppenheim 17 to inves- 
tigate the constrained equilibrium of isomer groups, 
Kestin and coworkers in studies of irreversible ther- 
modynamics '8 and continuum mechanics, ~9 Keck 2° 
and Levine 2' to estimate chemical reaction rates, 
Pope 22 to calculate pdfs for turbulent flows, Kerner ~3 
to study speciation in ecological systems, and 
Dornbush 24 to investigate exchange rate overshooting 
in monetary systems. 

There has been a widespread tendency to identify 
the RCCE method with the well known pseudo-stea- 
dy-state approximation (PSSA) also used to reduce 
the number of differential equations required to 
describe the evolution of complex systems. As will be 
seen, however, the two methods are quite distinct 
both from a fundamental and an applied point of 
view. In particular the pseudo-steady-state approxi- 
mation (PSSA) requires a complete kinetic model for 
the system whereas the rate-controlled constrained- 
equilibrium (RCCE) method only requires a 
knowledge of the rate-controlling reactions. 

The statistical mechanical methods used to 
determine the equilibrium thermodynamic state of 
systems subject to fixed external constraints are 
reviewed in the next section of this paper. In Section 
3 these methods are generalized to include additional 
constraints (passive resistances) imposed by the 
internal dynamics of the system. The thermodynamics 
of constrained equilibrium is reviewed in Section 4 
and the evolution of rate-controlled constrained- 
equilibrium gas mixtures is discussed in Section 5. The 
RCCE method is compared with conventional 
methods for treating such mixtures in Section 6. An 
illustrative example of the application of the method 
to the pure oxygen system is given in Section 7 and 
practical applications are discussed in Section 8. The 
advantages and disadvantages of the RCCE method 
are summarized in the final section. 

2. STATISTICAL THERMODYNAMICS 

2.1. Micro- and Macrostates 

The microstate of a system may be defined as the 
most complete description of its condition that can 
possibly be given. For a mechanical system, the 
possible microstates are the energy eigenfunctions of 
the Hamiltonian describing its evolution. 

The macrostate of a system corresponds to the most 
probable mixture of microstates consistent with those 
properties of the system which can be independently 
measured or controlled b3} an observer. Examples of 
such properties for mechanical systems are the energy, 
volume, pressure and elemental composition of the 
system. 

2.2. Maximum Entropy Principle 

Let p~ be the probability that a system whose 
condition is not precisely known is in one of its 
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possible microstates j. According to the genera l  
principles of statistical mechanics, 25 thermodynam- 
ics 26 and information theory, 27 the macrostate of such 
a system can be determined by maximizing the dimen- 
sionless function. 

= - ~ p j l n p ]  (2.1) 
J 

subject to the normalization condition 

p/ = 1 (2.2) 
J 

and all other constraints which restrict the probabili- 
ties pj. 

The informational entropy S~(p_) is identical to 
(2.1), the statistical mechanical entropy is 
SB(P_) = kBS(p_), where kB is the Boltzmann constant, 
and the thermodynamic entropy S(E, V, N) is the 
maximum value of the statistical entropy ~ r  given 
values of the energy, volume and composition. 

2.3. Method of  Lagrange Multipliers 

The maximum of (2.1) subject to the constraint 
(2.2) can easily be found using the elegant method of 
undetermined Lagrange multipliers. Since we shall be 
using this method repeatedly for increasingly complex 
sets of constraints, a brief description of it will be 
given here. 

The general problem is to find the extrema of a 
function S(x) subject to a set of r constraints 

F,(x_) = Cj (i = l . . . r )  (2.3) 

where the Ci are constants. The solution proposed by 
Lagrange involves, first, finding the unconstrained 
extrema of the function 

G(x, 2) = S(x) - ~ 2i Fi(x) (2.4) 
i 

where the 2i are arbitrary constant multipliers. This 
requires solving the set of equations 

OG(x, 2_)/Oxj = 0 (2.5) 

to obtain x(_2). The undetermined multipliers can then 
be found by substituting _x(_2) back into (2.3) to obtain 
the set of equations 

F,(x(2)) = Ci (i = 1 . . . r )  (2.6) 

which can be solved for 2(C). Note that to obtain a 
solution of the problem the constraints FAx) must be 
linearly independent. In the present application, one 
must also verify that the extrema found are maxima. 
For a convex function such as the entropy (2.1) this 
will always be the case. 

2.4. Normalization Constraint 

Applying the above method to (2.1) and (2.2) we 
find 

lnpj  - 1  - ~t = 0 

which gives 

(2.7) 

lnpj  = - 1 - ct (2.8) 

the undetermined Lagrange multiplier where ct is 
conjugate to the constraint (2.2). It can be seen f rom 
(2.8) that, in this case, the macrostate corresponds to 
a uniform distribution over microstates. 

To determine the value of ct, (2.8) may be sub- 
stituted back into (2.2) to obtain 

exp(~ + 1) = W (2.9) 

where W is the number of microstates of the system. 
Combining (2.8) and (2.9) gives 

pj = W -l  (2.10) 

which when substituted into (2.1) gives the familiar 
result 

= In W. (2.11) 

2.5. Energy Constraint 

If we now consider an isolated system for which the 
energies of the microstates are given by ~j then the 
energy 

E = E F'JPJ (2.12) 
J 

is a constant. Again using the method of Lagrange 
multipliers to maximize the entropy (2.1) subject to 
the two constraints (2.2) and (2.12) we obtain 

In pj = - -  1 - ~ - flej. (2.13) 

Substituting (2.13) back into (2.2) gives 

exp(ct + 1) = ~ e x p ( - f l e j )  = Q([3) 
J 

(2.14) 

where Q(/~) is the partition function for the system. 
Combining (2.13) and (2.14) we obtain the canonical 
distribution function 

pj = Q - '  exp (-f l~j).  (2.15) 

The corresponding energy and entropy obtained by 
substituting (2.15) into (2.12) and (2.1) are 

E(fl) = a - '  ~ ejexp ( - f l e j )  = 
J 

and 

- e ln  Q/Ol3 

(2.16) 

S(E) = l n Q  + fiE. (2.17) 

It can be seen from Eqs (2.15)-(2.17) that a 
knowledge of the partition function Q is sufficient to 

,.1pE CS 16:2-C 
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completely determine the thermodynamic state of a 
system. To calculate Q, the energies of the microstates 
must be known and for complex systems these can 
only be determined experimentally or estimated using 
various approximations. 

and 

2.6. Independent Particle Model 

For a system composed of N independent distingu- 
ishable particles in a volume V, the probability of  
finding the system in a specified microstate may be 
separated as a product in the form 

p(ki,  k 2 . . . k s )  = cx(k l )x (k2) . . . x (kN)  (2.18) 

where x(kj) is the probability of finding a particle in its 
'private' microstate kj, and c is a constant determined 
by the normalization conditions. The normalization 
condition (2.2) for the system is 

1 = 2 ~ . . . ~ _ , p ( k  1, k2 . . . kN) /N~ .  (2 .19)  

where the summations over kj are carried out as 
though the particles were distinguishable and the 
result is divided by N! to correct for the fact that 
permutations of indistinguishable particles do not 
lead to new microstates. Substituting (2.18) into (2.19) 
and using the normalization condition for the 
particles 

1 = ~ x(k) (2.20) 
k 

we find c = N~. so that (2.18) becomes 

p(kl,  k2 . . .  kN) = N~. x (k l )x (k , ) . . .X(kN) .  

(2.21) 

The energy of the system is simply the sum of the 
energies of the particles 

E = N ~  s(k)x(k) (2.22) 
k 

The corresponding entropy obtained by substituting 
(2.21) into (2.1) is 

= - N ~ x ( k )  lnx (k )  - INN].. (2.23) 

It should be noted that the expression (2.23) is valid 
for any number of particles and in particular for 
n = 1 it reduces to (2.1). For large N one can make 
the approximation In N! ~ N(ln N - 1) and (2.23) 
becomes 

~ = - N ( ~ k  x(k) l n x ( k ) + l n N - 1 ) .  

(2.24) 

In the more general case of a system composed of 
ns distinguishable groups of particles each containing 

identical members, the energy and entropy may be 
obtained by simply summing (2.22) and (2.24) over all 
groups. Thus 

E = ~ Nj ~ ej(k)xj(k) (2.25) 
j k 

S = - ~ N j ( ~ x j ( k )  l n x j ( k )  

+ In Nj - 1) (2.26) 

where ej(k) is the energy of a particle of typej  in the 
microstate k and xj(k) is the probability of finding a 
particle of  type j in the microstate k. 

Maximizing the entropy (2.26) subject to the con- 
straint (2.25) and the normalization conditions 

~ x j ( k )  = 1 (1" = l . . . n s )  (2.27) 
k 

we obtain for the equilibrium state 

In xj(k) = - 1 - ~jlUj - #~j(k) (2.28) 

where, ~j and fl are the Lagrange multipliers conjugate 
to the constraints (2.27) and (2.25). 

Substituting (2.28) back into the normalization 
conditions (2.27), gives 

exp (ctj/Nj + 1) = ~ exp (-Bier(k)) 
k 

= Qj(V, fl), (1" = 1 . . .ns )  

(2.29) 

where Qj is the partition function for the species j. If 
we assume that the energies of  the particles are in- 
dependent of their position in the volume V, 

Qj(V, 8) = [Qj]V (2.30) 

where the partition function per unit volume [Qj] is 
only a function of ft. Combining (2.29) and (2.28) we 
find 

xj(k) = Qj-I exp ( - f ls j (k)) ,  (2.31) 

and substituting (2.31) into (2.25) gives 

E = ~ NjEj(fl) (2.32) 
J 

where 

Ej(fl) = ~ sj(k)Qj -1 exp ( - f l s j (k) )  (2.33) 
k 

= - ~ In Q / ~ B  

is the average energy per particle of species j. The 
entropy obtained from (2.26), (2.31), (2.32) and (2.33) 
is 

S(E, V , N )  = f i E - -  ~ ~ ( in (N j /Qj )  - 1). 
J 

(2.34) 

When working with (2.34), it is important to keep in 
mind that, by virtue of (2.32), fl = fl(E, N) is an 
implicit function of both energy and composition, and 
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that, by virtue of (2.29), Qj = Qj(V, [J) is also an 
implicit function of these variables as well as the 
volume. 

3. CONSTRAINED EQUILIBRIUM 

In the previous section we have tacitly assumed that 
the particles of our system maintain their identity but 
are capable of exchanging energy. The only con- 
straints considered were those imposed by the nor- 
malization conditions for the probability functions 
and the universal law for conservation of the energy. 
The equilibrium state determined by maximizing the 
entropy subject to these constraints is that to which 
the system relaxes at times large compared to the time 
scale zE on which energy is exchanged between 
particles. 

If we now suppose that our particles are composed 
of a smaller set of (more) fundamental particles and 
are capable of undergoing interactions in which their 
identity may change but the number of fundamental 
particles remains constant, then we must consider the 
possibility of additional constraints of the form 

Ci = ~ aljN/ (i = l . . . n e )  (3.1) 
J 

where ne is the number of different types of fun- 
damental particles, Ci is the number of fundamental 
particles of type i in the system and a 0 is the number 
of fundamental particles of type i in a complex 
particle of type j.  

In any real system, the apparent nature of the fun- 
damental particles will depend both on the energy of 
the system and the time scale on which it is observed. 
If the observation time is large compared to the time 
scale zc on which chemical reactions occur, but small 
compared to the time scale z~ on which ionization 
reactions occur, the fundamental particles will be the 
neutral atoms; if the observation time is large 
compared to z~ but short compared to the time scale 
zN on which low energy nuclear reactions occur, the 
fundamental particles will be the electron and the 
atomic nuclei; if the observation time is large 
compared to ry but small compared to the time scale 
z/i for fl-decay, the fundamental particles will be the 
electron, proton and neutron; if the observation time 
is large compared to z~ but small compared t o . . .  and 
so on to infinity. 

It follows that the concept of  an equilibrium state has 
meaning only when the constraints on the system are 
carefully specified and that all equilibrium states are in 

fac t  constrained-equilibrium states. 

3.1. Chemical Equilibrium 

If we assume that the rates of nuclear and ioniza- 
tion reactions are infinitesimal, then the fundamental 
particles are the neutral elements. In this case, the 
equilibrium chemical composition of an ideal gas 
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mixture containing ns different species composed of 
ne different elements can be obtained by maximizing 
the entropy (2.34) subject to the ne constraints (3.1). 
Once again using the method of Lagrange multipliers 
we obtain 

~ = Q j e x p ( - ~ a 0 )  (3.2) 

where Qj is given by (2.29). Note that in using the 
expression (2.34) for the entropy, it has been tacitly 
assumed that energy exchange processes are sufficient 
to equilibrate the internal energy state of the system. 

Substituting (3.2) into the constraints (3.1) and the 
expression (2.32) for the energy we obtain the ne + 1 
equations 

Ci = ~ a q Q , ( V ,  fl) (3.3) 

(i = l . . . n e )  

and 

E = ~" EJ([3) QJ(V'[3) exp ( - -  ~k 

which can be solved for the ne + 1 unknown 
Lagrange multipliers 

7, = 7~(V, E, C~ ...C,,~) (i = I . . .ne)(3 .5)  

and 

/~ = /~(V, E, C~.. .  C,e). (3.6) 

Substituting (3.5) and (3.6) into (3.2) we obtain the 
composition 

= N A V ,  E , C , . . . C , , , )  ~j = 1 . . . n s )  

(3.7) 

as a function of V, E and C~ . . .  C, e. This completely 
determines the equilibrium state of the system. 

This method of determining the equilibrium com- 
position of a chemical system was apparently first 
proposed by Powell and Sarner ~8 and named the 
method of 'element potentials'. An important 
advantage of the method over the well known alterna- 
tive method of equilibrium constants 29 is that it 
depends only on a knowledge of the thermodynamic 
properties of the species in the system and does not 
require any information about the reactions which 
allow it to relax to equilibrium as long as such 
reactions exist. It is therefore evident that the equi- 
librium composition of a reacting gas mixture is com- 
pletely independent of any reaction mechanism even 
though it might appear otherwise from the method of 
equilibrium constants which requires specification of 
as many linearly independent reactions as there are 
species in the system. In addition to its fundamental 
importance this feature of the method of element 
potentials can be of considerable practical value since 
for systems involving a very large number of possible 
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species, the specification of the very large number of 
linearly independent reactions required by the method 
of equilibrium constants can be a nontrivial task. 

3.2. Constrained Chemical Equilibrium 

As mentioned in the introduction, there are many 
situations of practical interest in which it is possible to 
identify classes of slow chemical reactions which if 
completely inhibited would prevent the relaxation of 
the system to chemical equilibrium. Some of the con- 
straints which have been investigated to date in con- 
nection with a variety of combustion problems are 
listed in Table 1. 

Except for the inclusion of additional constraints 

Ci = ~ a~Nj (i = ne + 1 . . . nc ) (3 .8 )  
J 

of the same form as (3.1), the calculation of the con- 
strained-equilibrium composition can be carried out 
in exactly the same manner as in the previous section. 
In this case one obtains the nc + 1 unknown 
Lagrange multipliers 

71 = ?i(V, E, CI . . . .  C,,c) (i = 1 . . .nc )  

(3.9) 

fl = fl(V, E, C, . . . .  C,,) (3.10) 

and 

from which the composition can be obtained in the 
form 

N: = Nj(V, E, C1 . . . .  C,c) (1" = 1 . . .ns) .  

(3.11) 

3.3. Multiple Temperature Gas Mixtures 

It is often possible to approximate the energy of a 
system as the sum of the energies in a set of indepen- 
dent 'normal modes'. In an ideal gas mixture such a 
set is represented by the translational, rotational, vi- 
brational and electronic degrees of freedom of the 
molecules. Under some conditions the time scales for 
energy exchange between different degrees of freedom 
can be long compared to those for energy exchange 

TABLE I. Examples of generalized constraints 

Number of molecules 
Fixed nitrogen 
Free oxygen 
Carbon monoxide 
Free valence 
Active valence 
Bonded atom pairs 
Valence bonds 
Valence bonds of order k 
n Atom molecules 

within the individual degrees of freedom. For 
example, behind shock waves in diatomic gases the 
characteristic time Zvv for energy exchange between 
translation and vibration can be five or more orders of 
magnitude slower than the characteristic times Tar 
and Zvv for translational or vibrational relaxation. 
Thus on an intermediate time scale the translational 
and vibrational energies ET and Ev constitute ad- 
ditional constraints on the allowed state of the gas. 

In such cases the constrained-equilibrium state of a 
Gibbs-Dalton mixture of molecules each having nm 
normal modes can be obtained by maximizing the 
entropy 

S = - - ~ N : ( ~ x , ( i )  lnXkj(i) + lnNj  -- 1)  

(3.'12) 

subject to the constraints 

1 = y~ x , j ( i )  (1 = 
i 

ek = ~-'ff] e.(i) x~j(i) N: 
I l 

1 . . .ns ,  k = l . . . n m )  

(3.13) 
(k = l . . . n m )  

(3.14) 

where Xkj(i) is the probability of finding a molecule of 
typej  in the microstate i of normal mode k and ekj(i) 
is the corresponding energy of the microstate. 

Again using the method of Lagrange multipliers we 
find 

where 

Xk/(i) = Q~I exp (-- flkeky(i)) (3.15) 

Qkj = ~ exp (--flkekj(i)). (3.16) 
i 

Substituting (3.15) back into the constraint (3.14) 
gives 

8 k = ~ S k j ( f l k ) N  i (3.17) 
J 

where 

ekj(flk) = -- 8 In Qkj/8[~k. (3.18) 

Note that for the translational modes (k = 1) 

au  = a u ( v ,  fli) = [al~]V (3.19) 

is a function of both volume and fl~ whereas for the 
internal modes 

M 
FN Qkj = Qk/(flk) (k = 2 . . . nm) .  (3.20) 
FO 
CO The entropy of a gas in a multiple temperature 
FV constrained-equilibrium state, obtained by substitut- 
AV ing (3.15) into (3.12) and using (3.17) is 
PB 
VB S(V,~,N) = ~flkek -- ~Nj( ln(N/ /Qj)  - 1) 
Bk k : 
A. (3.21) 
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where 

a j ( v ,  fl_) = v I-I [Okj] (3.22) 
k 

Maximizing (3.21) subject to a constraint on the total 
energy 

E = ~ e~ (3.23) 
k 

gives flk = fl and (3.21) reduces to (2.34). 
Maximizing (3.21) with respect to the constraints 

(3.1) and (3.17), the constrained-equilibrium com- 
position of a multiple fl gas mixture is once again 
found to be 

Nj = Q j e x p ( - ~ i  7~a~) (3.24) 

in which Q/is given by (3.22). 

3.4. Linear Independence o f  Constraints 

To obtain solutions of the equations derived in the 
preceding sections, it is necessary that the constraints 
be linearly independent. For  arbitrarily specified con- 
straints, such as those listed in Table 1 above, it is not 
always clear when this is the case and some interesting 
and useful general relations exist. 

Among the obvious relations are: 

E = ~ e k (3.25) 
k 

M = ~ N :  = ~ A , ,  (3.26) 
j n 

C = ~ C ~  = ~ n A , ,  (3.27) 
i n 

where C is the total number of elemental atoms and 
,4, is the number of n-atom molecules. Also by defini- 
tion: 

PB = ~ B k (3.28) 
k 

VB = ~ kBk (3.29) 
k 

where PB is the number of bonded pairs of atoms, VB 
is the number of valence bonds and Bk is the number 
of bonds of order k. 

If  we now consider systems containing only linear 
or branched molecules, then the number of bonded 
pairs in any species j is 

Pi = ai - 1 (3.30) 

where 
a~ = ~ a~/ (3.31) 

i 

is the number of atoms in species j.  The number of 
bonded pairs in the system obtained by summing 
(3.30) over all species is 

PB = y 'P iN:  = ~ C ,  - M = C -  M. 
j , 

(3.32) 

Thus for a given system PB and M are related. 
The free valence of a species j may be defined as 

f j  = ~ viaij - 2bj (3.33) 
i 

where vi is the valence of element i, and bj is the 
number of valence-bonds in the species j.  Summing 
(3.33) over all species we obtain the free valence of the 
system 

FV = ~ = T V -  2VB (3.34) 
J 

where 

T V  = ~ v, Ci (3.35) 
i 

is the total valence of the system and 

VB = ~ biN i .  (3.36) 
/ 

Thus FV and VB are related. 
Given the elemental composition of the system 

C~.. .  C,e, the number of molecules M, and the free 
valence FV, we find from (3.26) and (3.27) 

Ai = -- C + 2M + A3 + 2A4 -t- 3A5.. .  (3.37) 

A2 = C - M - 2,43 - 3A4 - 4.45... (3.38) 

and from (3.28), (3.29), (3.32) and (3.34) 

B~ = - ½ (TV- FV) + 2(C- ~r) + B3 

+ 2//4 + 3B5... (3.39) 

B2 = ½ ( T V  - FV) - (C - M)  - 2B 3 

- 3B4 - 4B5 . . . .  (3.40) 

It can be seen from (3.37) and (3.38) that for gas 
mixtures containing only molecules with no more 
than 3 atoms, the number ofmonatomic and diatomic 
molecules is determined by the total number of 
molecules and the number of triatomic molecules. It 
can also be seen from (3.39) and (3.40) that for gas 
mixtures containing only single and double bonds, the 
number of such bonds is determined by the total 
number of molecules and the free valence. Failure to 
recognize the existence of these relationships led to 
many 'singular matrix' warnings in early calculations. 
In complex systems containing large numbers of 
possible constraints, many other such relationships 
will exist and it is the opinion of the author that the 
methods of group theory may be useful in this connec- 
tion. 

4. T H E R M O D Y N A M I C S  O F  C O N S T R A I N E D  E Q U I L I B R I U M  

In the preceding analysis we have considered only 
the final state in which an isolated system subject to 
fixed constraints will be found after an infinitely long 
period of time. We now wish to extend the analysis to 
include situations in which as a result of interaction 
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with the environment the constraints may be 
functions of time. The science of t hermodynamics  
enables us to do this by introducing the assumption 
that, if the changes in the constraints are sufficiently 
slow, a system such as the gas mixture under con- 
sideration will evolve through a sequence of quasi- 
static states which at all times remain close to the 
static equilibrium states determined by the instan- 
taneous values of the constraints. In a gas, this 
condition is supposed to be maintained by molecular 
collision processes whose relaxation time zr is short 
compared to the characteristic time for a change in the 
constraints, e.g. zr ,~ % = ( d l n V / d t )  -~. 

4.1. Thermodynamic  Variables 

In conventional thermodynamics the constraints 
considered are the energy E, the volume V, and the 
numbers ~ of the various species in the system. In this 
case, the differential change in the entropy produced 
by small changes in the constraints is given by the 
Gibbs equation 

T d S  = d E  + p d V  - ~ l J j d N j  (4.1) 
J 

where by definition 

T = (OS/OE) -~ (4.2) 

is the temperature 

p = T ( d S / d V )  (4.3) 

is the pressure and 

t~j = - T(OS/ONj) (4.4) 

is the Gibbs free energy per particle. 
The relationship between the thermodynamic 

variables T and #j and the statistical variables/~ and 
Qj can now be established. Recalling that S = kBS 
and using (2.34) and (2.32) to evaluate the partial 
derivatives in (4.2)-(4.4), we find 

T = (kB/3) I (4.5) 

/~/ = kB T In (Nj /Qi)  (4.6) 

and 

p V  = k B T ~  Nj (4.7) 
i 

which is the Equation of State for an ideal gas 
mixture. 

Substituting (3.24) into (4.6) we find for a system in 
constrained equilibrium 

I~/ = -- k ,  T Z T i a i i  = Z 2 i a i i  (4.8) 
i i 

where we have introduced the 'constraint potential' 

2i  = - -  k s  TYi • (4.9) 

If the constraint conjugate to Y~ is an element then 2~ 
is also the 'element potential'. 

K E C K  

Multiplying (4.8) by ~ and summing over species 
we obtain the Gibbs free energy 

F = ~ p i N i  = ~ 2 i C i  (4.10) 
) i 

in which 

Ci = ~ aijNj (i = l . . . n c ) .  (4.11) 
J 

Substituting (4.8) into (4.1) we obtain the Gibbs 
equation in the form 

T d S  = d E  + p d V  - ~ 2,dC, (4.12) 
i 

from which we also find 

2~ = - k . T y i  = - T(OS/OC,)E.v. (4.13) 

The last term in (4.12) represents the entropy produc- 
tion due to chemical reactions which change con- 
straints. Note that for the elements 

dC~ = 0 (i = l . . . n e ) .  (4.14) 

4.2. Free Energy  Funct ions  

For systems interacting with the environment in 
such a way that either Tand Vor Tand p rather than 
E and V are specified, the constrained-equilibrium 
composition can be determined by minimizing either 
the dimensionless Helmholtz free energy 

A(T ,  V, N)  = E - T S  = kB T ~ Nj (In (Nj /Q,)  - 1) 
J 

(4.15) 

or the Gibbsfree energy 

F ( T , p , N )  = A + p V  = k B T ~  N j l n ( N j / Q j )  
/ 

(4.16) 

subject to the constraints (4.11). In either case one 
obtains 

which is identical to the result (3.2) obtained by max- 
imizing the entropy for sytems at fixed E and V. The 
difference occurs in the constraint equations which 
must be solved to obtain the unknown multipliers. 

For the case where T and V are the independent 
variables, substitution of (4.17) into (4.11) gives the nc 

equations 

(i = 1 . . . n c )  

which can be solved for the nc unknowns 

7k = 7k(V, T, Cl . . . .  C, ,)  (k  = 1 . . . n c ) .  (4.19) 
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For the case of fixed p and T, substitution of (4.17) 
into (4.11) and (4.7) gives the nc + 1, equations 

(i = 1 . . . n c )  (4.20) 

and 

p = 

(4.21) 

which can be solved for the nc + 1 unknowns 

Yk = Yk(P, T, Cl . . . .  C,~) (k  = l . . . n c )  

(4.22) 

and 

V = V(p, T, C1 . . . .  C,c). (4.23) 

For a few very simple systems, the constraint 
equations above can be solved explicitly and an illu- 
strative example is given in Section 7. In general, 
however, they must be solved numerically and 
algorithms for doing this have been developed by 
Warga, 3° Zeleznik and Gordon, 31 Gordon and 
McBride n and Reynolds. 33 Once the y values have 
been found, the constrained-equilibrium composition 
can be obtained from (4.17). 

In concluding this section we observe that differen- 
tial changes in A and F are given by 

dA  = - p d V  -- S d T  + ~ #jdNj (4.24a) 
J 

= -- p d V  - S d T  + ~ 2~dC~ (4.24b) 
i 

and 

dF  = 

from which we find 

2i = - kB Tyi 

Vdp - S d T  + ~ # i d ~  (4.25a) 
J 

Vdp - S d T  + ~" 2,dC, (4.25b) 
i 

= ( ~ A / O C ) r , v  = ( O F / e C ) r . ,  

(4.26) 

which is the analog of (4.13). 
It can be seen from (4.24) and (4.25) that the 'con- 

straint potentials' 2~ play exactly the same role with 
respect to the constraints C~ as the chemical potentials 
/~j play with respect to the species numbers Nj. The 
important distinctions are that the 2's are independent 
whereas the #'s are not, and that in constrained equi- 
librium, a small number of 2's can determine a very 
large number of #'s. 

5. R A T E - C O N T R O L L E D  C O N S T R A I N E D  E Q U I L I B R I U M  

(RCCE) 

In conventional thermodynamics it is assumed that 
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a system subject to slowly changing externally con- 
trolled constraints, such as the energy and volume, 
will evolve through a sequence of 'quasi-static' states 
which are very close to the equilibrium state deter- 
mined by the instantaneous values of the external 
constraints. Under these conditions the time-depen- 
dent composition can be obtained in the form 

Nj(t)  = Nj(E(t) ,  V(t), C, . . . .  Cne ) (5.1) 

analogous to (3.7). 
Shifting equilibrium calculations carried out in this 

manner are widely used in thermodynamics, aerody- 
namics and chemistry and are familiar to most 
scientists and engineers. They clearly describe rever- 
sible processes since the energy distribution and com- 
position are functions only of the constraints, in this 
case energy and volume, so that in any cycle in which 
the constraints are returned to their initial values, the 
system will be returned to its initial state. 

5.1. Chemical  Rate Equations 

We now wish to consider a more general situation 
in which there may be additional contraints on the 
composition of a gas mixture which are controlled by 
the internal dynamics of the system and are slowly 
changing functions of time. 

If this is the case, it should be possible to obtain the 
composition in the form 

N:( t )  = N j ( E ( t ) ,  V ( t ) ,  Ct . . . .  Cat, (5.2) 

C,¢+ 1(0.- .  C,,.(t)) 

analogous to (3.11). Some examples of such con- 
straints are those listed in Table 1. 

We shall assume that the gas is contained in a 
volume V(t) which may be a slowly varying function 
of time and that energy exchange reactions have equi- 
librated so that the energy distribution of the 
molecules can be characterized by a single tem- 
perature T(t),  which may also be a slowly varying 
function of time. We further assume that changes in 
the composition of the gas are the result of chemical 
reactions of the type 

Z v; 8j ,-. E Bj (5.3) 
/ i 

where B: is the symbol for species j,  and v~ and v/k are 
the corresponding stoichiometric coefficients for the 
forward and reverse directions of the elementary 
reaction k. An example of a reaction of the type (5.3) 
is the dissociation-recombination reaction 

H 2 q- He ~ 2H + He. 

If this reaction is denoted by the index k = 1, and the 
species are denoted by the symbols BI = H2, 
B2 = He, and B3 = H then the nonzero stoic- 
hiometric coefficients would be v~ = 1, v~ = 1, 
vfi = 2, and vfi = 1. Notice that the catalyst He 
which supplies energy for the forward dissociation 
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reaction and removes energy for the reverse recom- 
bination reaction appears on both sides of the 
reaction equation even though its concentration is not 
changed. This establishes the order of  the reaction 
which is 2 for the forward direction and 3 for the 
reverse direction. 

The phenomenological rate equation for an in- 
dividual species j is 

where 

vjk = 

and 

= V ~ vikrk (5.4) 
k 

vj, - v ;  (5.5)  

rk = r{ - r; (5.6) 

is the net reaction rate per unit volume. 
The forward and reverse reaction rates are given by 

the phenomenological expressions 

v+ 
r~ = k [  (T) [-I [~]  i* (5.7a) 

J 

and 

r~- = k ;  (T) l-I  [~ l  ')~ (5.7b) 
J 

where k ; (T )  and k/-(T) are rate constants for the 
forward and reverse reactions and [Nj] = ~ / V  is the 
concentration of  species j. 

At equilibrium the gas composition must be in- 
dependent of time and thus the left hand side of (5.4) 
must vanish for all species. A sufficient condition for 
this is the detailed balancing equation 

rL = rL (5.8) 

where the subscript e denotes equilibrium with respect 
to the elements. To prove that (5.8) is also a necessary 
condition, we note that to fix the equilibrium com- 
position of a reacting gas mixture containing ns 
species, (5.8) must be true for ns linearly independent 
reactions involving the species. Since the equilibrium 
composition cannot depend on the choice of the in- 
dependent reactions, (5.8) must be true for all possible 
reactions. 

Substituting (5.7) into (5.8) we obtain the rate 
quotient law 

k ~ l k ;  = I - I [~e]  ':j* = K<k(T) (5.9) 
/ 

where 

K~k(T) = 1-I [Qi] "~* (5.10) 
i 

is the equilibrium constant for reaction k based on 
concentration. 

5.2. Rate Equations .for Constraints 

Differentiating the equations (4.11) for the con- 
straints with respect to time gives 

KECK 

~i = ~'~ a,7/Vj (5.11) 
i 

from which we may eliminate ~ using (5.4) to obtain 
the rate equations for the constraints 

C, = V ~ bikrk (5.12) 
k 

where 

bik = ~ aijvjk (5.13) 
J 

is the change in constraint C~ due to reaction k. 
Since elements are conserved in all reactions, we 

have 

bik = 0 (i = i . . . n e )  (5.14) 

which by virtue of (5.12) gives 

Ci(t) = Ci (i = 1. . .ne) .  (5.15) 

Using the rate-controlled constrained-equilibrium 
composition given by (4.17) to evaluate the reaction 
rates (5.7), we obtain a set ofnc-ne  first order differen- 
tial equations of the form 

C;i(t) = Ci(T(t), V(t), N l ( t ) . . .N , , ( t ) )  

(i = ne + 1 . . .ne)  (5.16) 

where 

Nj(t) = Nj(T(t,), V(t), C l . . .  C,~, 

C,,.+l(t)...C,,~(t)) (/ = l . . .ns) . (5 .17)  

is the rate-controlled constrained-equilibrium com- 
position. Given the initial values of T, Vand C~ . . .  C,c 
these equations can be integrated in conjunction with 
the equation of state and the conservation equations 
of thermodynamics and fluid mechanics to determine 
the evolution of the system. In a few simple cases this 
can be done analytically but, in general, numerical 
methods must be employed. It should be noted that, 
except for the addition of the rate equations for the 
time-dependent constraints, a constrained equi- 
librium calculation may be carried out in exactly the 
same manner as a 'shifting equilibrium' calculation. 

5.3. Rate Equations for  the Lagrange Multipliers 

The integration of the Eqs (5.16) for the constraints 
requires a calculation of the rate-controlled con- 
strained-equilibrium composition (5.17) at each time 
step. For this reason the calculations for small 
systems, in which the number of species is not very 
much larger than the number of constraints, may take 
more time than that required to integrate the full set 
of rate equations. 

An alternative approach is to integrate the rate 
equations for the Lagrange multipliers themselves. A 
problem which can arise in this method is that some 
of the Lagrange multipliers become infinite if any 
constraint is zero. Although this never occurs in real 
systems since no constraint can ever be identically 
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zero, it may occur in idealized calculations if the initial 
value of any constraint is set equal to zero. The 
problem may be circumvented by introducing the 
alternative set of variables 

F, = exp (--  y~). (5.18) 

Substitution of (5.18) into (4.17) then gives the con- 
strained composition in the form 

[Nj] = [Qj] I-I F~"  (5.19) 
i 

To obtain the rate equations for F~ we consider first 
the case in which T and V are the independent 
variables. Substituting (5.19) into the constraints 
(4.11) and differentiating the resulting equations with 
respect to time gives 

c, i v  = c,~(~/v) + c,~(i"/73 + Z c, .f- . ,  
n 

(5.20) 

where 

in which 

and 

d.l 

Civ = ~ a,~iNj] (5.21a) 
J 

C~r = ~. ao.(Ej(T)/kaT)[N/] (5.21b) 
J 

C,, = ~ aad,j[Qj], (5.21c1 
J 

d, i = 0 for a,j = 0 (5.22a) 

= a , j ~  F~ ki-~k" for a,j :/: 0 (5.22b) 
k 

where 5k, = 1 for k = n, 5k, = 0 for k :/: n is the 
Kronecker delta. Substituting (5.12) into (5.20) we 
find 

~_, C, ,r .  + Cir(7"/T) + C,v(("/V) - ~ bikrk 
n k 

= 0 

(5.23) 

in which rk(T, [_l_N]) is given by (5.6) and (5.7). 
For  the case in which E and V are the independent 

variables, we obtain from the expression (2.32) for the 
energy an additional equation for T 

~, CE, t', + c~Ai"173 + CEv(r"IV) - EIV = 0 
n 

(5.24) 

where 

Cev = ~ ~ ( T ) [ ~ ]  (5.25a) 
J 

Cer = ~, (Cq(T)T + Ej:(T)/kaT)[~] (5.25b) 
J 

Ce, = ~ 5(T)d,j[Qi] (5.25c) 
J 

in which 
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Cvj = dEj /dT (5.26) 

is the heat capacity of species j.  

Alternatively for the case in which p and T are the 
independent variables, we obtain from the Equation 
of State an additional equation for V 

Z c,°r, + c,T(i"/~ + c,,(r,/v) - b  = o 
n 

(5.27) 

where 

Cpv = - p (5.28a) 

Cpr = p + ~ E~(T)[~] (5.28b) 
i 

C,, = k8 T ~ d,j[Qjl. (5.28c) 
J 

Given the initial values of the constraints the rate 
equations for the constraints can be integrated numer- 
ically using codes such as LSOD134 or DASSL. 35 It is 
anticipated that this approach will be more efficient 
than stepwise integration of the equations for the 
constraints although no such calculations have yet 
been implemented. 

5.4. Degree of  Disequilibrium 

A useful parameter for measuring the departure of 
a reaction from equilibrium is the degree of disequili- 
brium 

q~,lk = In r~/r~. (5.29) 

Using the phenomenological expressions (5.7) for 
the reaction rates and the rate quotient law (5.9) we 
obtain from (5.29) 

~b,/k = -- ~ Vjk In (~[Qj) .  (5.30) 
i 

Substituting (4.6) into (5.30) we find for any system 

dpd k = -- ~. (ltj/kaT)v/k (5.31) 
/ 

and using (4.8) and (5.13) we obtain for constrained- 
equilibrium systems 

<kak = ~. ?ib,k = -- ~'~ (2dkaT)b,k . (5.32) 
i i 

It follows from (5.32) that any reaction k for which 
all b~k = 0 will be at equilibrium and its net rate will 
be zero. This provides an alternative method of deter- 
mining the constrained-equilibrium composition 
which if the only constraints are those on the 
elements, reduces to the method of equilibrium 
constants. 

It also follows that all reactions which change only 
a single constraint will relax to equilibrium at the 
same rate i.e.dPdk = yi(l)bik. Finally, since the con- 
straints are linearly independent, 7~ = 0 at equi- 
librium for any constraints changed by chemical 
reactions, i.e. all constraints except those for the 
elements. 
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5.5. Entropy Production in Chemical Reactions 

From the Gibbs Equation (4.1) it can be seen that 
the entropy production due to chemical reactions is 

aR = - ~ p j ~ / T  (5.33) 
i 

and from (4.8) we find for constrained equilibrium 

cr R = - ~ 2,C, IT. (5.34) 
i 

Using the rate equations (5.4) and (5.12) and the 
expressions for the degree of disequilibrium (5.32), we 
obtain for either case 

cr R = k a v e r  kqSdk = 
k 

k . V ~ ( r ~ -  - r k ) l n ( r ? / r ; )  >10,  
* (5.35) 

Thus for the phenomonical model described, the 
entropy production is always non-negative as 
required by the Second Law. If the only constraints 
on the system are those involving conservation of the 
elements, all reactions contribute to the sum in (5.35). 
If the system is evolving through a sequence of rate- 
controlled constrained-equilibrium states, only the 
reactions which change a constraint contribute to the 
entropy production. It may be noted that the 
magnitude of the entropy production due to a par- 
ticular reaction is a useful measure of its relative 
importance in determining the evolution of a system. 

It can also be seen from (4.24) and (4.25) that the 
rate of decrease of the Helmholtz and Gibbs free 
energy due to chemical reactions is 

A = P = -- TaR (5.36) 

which vanishes at equilibrium. 

5.6. Entropy Production in Energy Exchange 
Reactions 

The Gibbs equation for a multiple temperature gas 
mixture is 

V, dS = d E + p d V  - ~ , u j d ~  
/ 

- ~ (1 - Tl/T,)dek (5.37) 
k 

in which T~ = T T is the translational temperature 
and we have used the equation for the energy 

E = Z ~k (5.38) 
k 

and the Equation of State 

p V  = kBT~ ~, [Nj]. (5.39) 
J 

From (5.37) it can be seen that the entropy production 
rate due to energy exchange reactions in a multiple 
temperture gas is 

aE = ~ (T~ -I -- Ti-l)~k. (5.40) 
k 

Assuming that the energy transfer to a degree of 
freedom k can be represented as the sum of the contri- 
butions from all other degrees of freedom i, then 

ek = ~ eki (5.41) 
i 

and (5.40) can be written 

aE = ~ (~k,/Tk + ~ / T i  -- (~ki + ~,k)/T~). (5.42) 
k i 

A sufficient condition for cr E /> 0 is that eki be anti- 
symmetric in T k and T,. This is true for the commonly 
used relaxation equations 

ek~ = k a ( T ~ -  Tk)/Z~k, (5.43) 

and substituting (5.43) into (5.42) we obtain 

aE = kB ~ (r~ - Tk)2/T~Tkzik >~ 0 (5.30) 
k i 

which satisfies the requirements of the Second Law. 

6. C O N V E N T I O N A L  T R E A T M E N T S  OF C H E M I C A L  

REACTIONS 

Before discussing the applications of the RCCE 
method to practical combustion problems, we shall 
review briefly some of the conventional methods of 
treating chemical reactions in nonequilibrium 
systems. 

6.1. Shifting Equilibrium 

Shifting equilibrium calculations are a special case 
of RCCE in which fixed constraints on the elements 
are imposed but the thermodynamic variables such as 
energy, volume, temperature, and pressure are 
allowed to change slowly. Such calculations are the 
basis of classical thermodynamics and are routinely 
carried out by scientists and engineers. The NASA 32 
and STANJAN 33 codes were explicitly developed to 
implement such calculations. 

6.2. Linear Rate Equations 

Under some conditions, especially in the early and 
late stages of reaction, the rate equations can be linea- 
rized. In such cases, the system is amenable to linear 
analysis and a complete analytic solution is 
available. 29 This can be of considerable value in 
starting or terminating a calculation. However, for 
complex systems involving a large number of species, 
the algebra involved can be substantial. In particular 
inversion of an ns × ns matrix is required where ns is 
the number of species in the system. 

6.3. Integration of  a Complete Set o f  Rate 
Equations 

In principle, the most accurate method of determin- 
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ing the evolution of a homogeneous chemically 
reacting system for which the reaction mechanism is 
completely known is to integrate the full set of rate 
equations 

Ni = V ~ v i k r k  (j = l . . . n s ) .  (6.1) 
k 

For systems of interest in combustion involving 
hundreds of potentially interesting species and tens of 
thousands of possible reactions, this is a truly formid- 
able task and truncation of both the species and 
reaction lists is necessary especially if the chemical 
kinetics are to be combined with a flow calculation. 
The problem with truncation is that, unless great care 
is taken, the omission of an important fast reaction 
can result in serious errors. Furthermore, most of the 
rate constants needed to integrate even a modest set of 
rate equations are unknown and must be estimated. 
Thus, unless the corresponding reactions are at, or 
close to, equilibrium the results will depend strongly 
on the estimated rate constants and one is probably 
better off making the constrained-equilibrium as- 
sumption in the first place. In connection with this the 
following quotation from W.C. Gardiner's book 
Rates and Mechanisms of  Chemical Reactions, 36 
provides food for thought: 

The drawback of using computers to determine the predic- 
tions of mechanisms is that too much information must be 
given to a computer and that too much is returned. Ex- 
tracting the significant information from a computer 
output is likely to be more difficult than analyzing the 
differential equations in the first place. When the differen- 
tial equations can not be understood, however, computed 
solutions can be quite helpful, or indeed the only path for 
progress. 

6.4. Pseudo-Steady-State Approximation ( PSSA ) 

To reduce the number of differential equations 
which must be integrated, the pseudo-steady-state 
approximation is frequently used. This involves the 
assumption that for certain species, say j = 1 . . .  np, 

vj, r, = 0. (6.2) 
k 

This provides np nonlinear algebraic relations which 
can be used to reduce the number of differential 
equations to ns - ne - np. Although this can result 
in some simplification in the calculations for small 
systems, for large systems it may be difficult to find a 
sufficient number of steady state species to produce a 
significant effect. Moreover the results still depend 
explicitly on the rate constant for all the reactions in 
the system and as previously observed many of these 
may be uncertain or unknown. 

Finally a more subtle difficulty which must be faced 
is that it can no longer be proved, as for the RCCE 
method or for a full set of rate equations, that the 
entropy production will always be non-negative when 
the steady state assumption is employed. To illustrate 
this problem we start by separating the equation 
(5.33) for the entropy production into two parts 

np 

TaR : -- E # J ~  -- ~ # i ~ "  (6.3) 
1 np+l 

Substituting the rate equations (6.1) into the second 
term of this expression we obtain 

TaR = -- ~ # j ~  -- #j vjkr k .(6.4) 
1 np+l 

By virtue of the steady state relations (6.2) the lower 
limit np + 1 on the second sum can be replaced by 1. 
This gives 

TaR = - - ~ p j ~ - - ~ ( ~ l ~ j v j k ) r ,  (6.5) 

where we have changed the order of the summation. 
Substituting (5.31) and into (6.5), and using (5.29) and 
(4.27) we obtain 

np 

T ° ' R  ---- - -  2 / ' / i ] ~ J  + k n T v ~  (r + - r~) In  (r+ / r k  ) 
1 k 

(6.6) 

so that the second term is non-negative. The first term 
can be either positive or negative and its magnitude 
depends explicitly on the values of the rate constants 
involved in the steady state equations (6.2). To see this 
we note that these equations can in principle be solved 
to obtain 

Nj = Nj (k +, Kc, N,p+, ...N,.~) (1 = l . . . np ) .  

(6.7) 

The only a priori restrictions on the rate constants k + 
is that they are non-negative and bounded above. 
Whether this is sufficient to determine the sign of the 
PSSA entropy production (6.6) is not clear to the 
author and is left as an exercise for the reader. 

6.5. PSSA versus RCCE 

As mentioned in the introduction there has been a 
wide spread tendency to identify the rate-controlled 
constrained-equilibrium method (RCCE) as a special 
case of the pseudo-steady-state approximation 
(PSSA). It should be clear from the above discussion, 
however, that the two are quite distinct. If anything 
PSSA is a special case of RCCE involving the imposi- 
tion of nonlinear constraints on the species concentra- 
tions. Such constraints are, in fact, admissible 
provided the necessary information about the rate 
constants is known. To the author's knowledge they 
have not yet been considered and no algorithms for 
dealing with them have been developed. The 
following additional observations are also relevant. 

The steady-state approximation is based on the 
assumption that at some time during the evolution of 
a complex reacting system the difference between the 
production and removal rates of certain species is 
small compared to their sum. This permits the corres- 
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ponding differential rate equations to be replaced by 
algebraic equations. The total number  of differential 
plus algebraic equations remains the same, however, 
and the solution still depends explicitly on the rate 
constants for all the reactions included in the model of 
the system. The RCCE method on the other hand is 
based directly on the Maximum Entropy Principle of 
Thermodynamics and it is assumed that the system 
evolves through a sequence of constrained-equili- 
brium states obtained by maximizing the statistical 
entropy subject to a set of constraints imposed on the 
system by certain classes of slow reactions. No as- 
sumption of a quasi-steady state in the usual sense is 
made or implied. The total number  of differential rate 
equations required to describe the evolution of the 
system is reduced to the total number  of variable 
constraints used and the solution depends only on the 
rate constants for those reactions which change the 
value of a constraint. Finally, as shown above, the 
entropy production for a system evolving through a 
sequence of constrained-equilibrium states is non-  
negative. No corresponding general proof for the 
quasi-steady state approximation is known to the 
author. 

7. ILLUSTRATIVE EXAMPLE: THE O-SYSTEM 

To illustrate the RCCE method we shall consider 
its application to the pure oxygen system at constant  
temperature and volume. For this system which 
contains only a single element O and the three species 
O, 02 and 03 most of the results can be obtained 
analytically and the various steps in the method can 
be easily followed free of the numerical complications 
associated with more complex systems. 

The calculations will be divided into three parts: (1) 
Chemical equilibrium; (2) constrained equilibrium; 
and (3) rate-controlled constrained equilibrium. 

7.1. Chemical Equilibrium 

In numerical calculations it is convenient to replace 
the concentrations [N/] with the partial pressures 

pj = [N/] kaT. (7.1) 

Substituting this expression into (3.2) we obtain 

ln,~/ = - /~ - ZYia~/, (7.2) 
i 

where/~ = Pi/Po is the pressure of speciesj measured 
in standard atmospheres and 

/~ = - In ([Q/]kaT/po) (7.3) 

is the dimensionless standard Gibbs free energy which 
can be obtained from thermodynamic tables using the 
relation 

~ = F~°/RT = (H~ i -TS° ) /RT ,  (7.4) 

where b'~, ~ and ~ are the standard molar Gibbs free 

TABLE 2. 

A. Fundamental constants 38 

Ice Point T O = 273.15 K 
Standard atmosphere P0 = 101,325 N/m 
Molar volume V 0 = 22,414 cc 
Gas constant R = 8.3144 J/mol K 
R/po R 0 = 82.06 atm cc/mol K 

B. Thermodynamic properties 37 of species for pure 
O-system at T = 4000K, (RT = 7.9488 kcal/mol) 

.j Species H ° S ° F ~o 
kcal/mol cal/mol K kcal/mol 

1 O 78.124 51.546 - 128.06 - 16.110 
2 02 33.201 7 0 . 7 6 6  -249.86 -31.433 
3 03 84.393 90.196 -276.39 -34.771 

energy, enthalpy and entropy, R is the universal molar 
gas constant  and the notat ion is that used in the 
J A N A F  tables. 37 

For convenient reference the values of p0 and R are 
given in Table 2A along with the values for the gas 
constant  per atmosphere R0, the standard molar 
volume V0, and the ice point To. In terms of these 
constants 

pj = [ ~ ] R 0 r  = [~]VoT/To (7.5) 

where [~]  = Nika/RVis the particle concentration in 
moles per unit volume. 

For a system containing only the element oxygen, 
Eq. (7.2) reduces to 

lnp j  = - /~o _ ~,al/ (7.6) 

where the subscript 1 denotes elemental oxygen for 
which the constraint equation is 

[gO] = [01 + 2[Oz] + 31031. (7.8) 

In terms of partial pressures this becomes 

PE = [ E O ] R T  = p, + 2/~2 + 3/33 (7.9) 

where the subscripts 1, 2 and 3 denote O, 02 and 03 
respectively. Substituting (7.6) into (7.10) and noting 
that aH = 1, a~2 = 2 and a~3 = 3 we obtain the 
cubic equation 

b~Ft + 2b.,F~ + 3b3F~ (7.10) 

in which 

bj = e x p ( - -  /~o) (7.11) 

and 

Fi = exp (--  71). (7.12) 

The partial pressures in terms of F~ are simply 

pj = bjF~. (7.13) 

Although the general solution for cubic equations 
such as (7.10) is well known, 38 it is simpler in this case 
as well as instructive to regard 71 as the independent 
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FIG. 1 Partial pressures of species and elemental oxygen as a 
function of the 'element potential' V(1). 

variable and find a parametric solution. All ther- 
modynamic properties can then be obtained as 
functions of this parameter and cross plotted in any 
manner  desired. 

The thermodynamic properties necessary to carry 
out numerical calculations are tabulated in Table 2B 
for a temperature of 4000 K and plots of the species 
partial pressures p / an d  the elemental pressure PE are 
shown in Fig. i as a function ofT~. It can be seen from 
this figure as well as (7.6) that plots of In pj as a 
function of; 'l  are simply straight lines with slopes d In 
p j /dT1  = - j  and intercepts at "/i = 0 of -/~o. Other 
thermodynamic properties can easily be calculated 
from the partial pressures (7.13). In particular: 
(1) total pressure 

p = ~ p j  (7.14) 
J 

-1  

- 2  

.o 

==-4 
o 
E 
01  - -'~ 

0 
.J 
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-3 

O3 
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FIG. 2. Mass fractions of species as a function of element 
concentration times molar volume, [EO] V o. 

(2) mass fractions 

Yj = JPj/PE (7.15) 

(3) dimensionless energy 

E / E O R T  = ~ (pflpE)(/~j -- 1) (7.16) 
J 

(4) dimensionless Helmholtz free energy 

A / E O R T  = ~ (pflpE)(/~ ° -- 1 + ln/~j). 
J 

(7.17) 

Figure 2 shows a cross-plot of  species mass fractions 
as a function of the dimensionless elemental con- 
centration 

[EO]V 0 = PETo/T. (7.18) 

7.2. Constrained Equilibrium 

To illustrate the method by which the properties of 
constrained-equilibrium states can be determined, we 
consider two possible constraints: one on the con- 
centration of total moles 

[ J ~  = [(~)] + [(~2] "~- [(~3] (7.19) 

and the other on the concentration of 'free oxygen' 

[FO] = [01 + [031. (7.20) 

In terms of partial pressure, (7.19) and (7.20) can be 
also written 

= [ff4]RoT = /~1 '[- P2 '[- P3 (7.21) 

and 

J~F = [frO]RoT = /31 -t- P3" (7.22) 

The ao coefficients for the three constraints (7.8), 
(7.19) and (7.20) are shown in matrix form in Fig. 3. 
The species themselves can also be considered as con- 
straints and their coefficients are also given. 

It can easily be verified, by calculating the appro- 
, priate determinants and checking that they are not 

zero, that any two of the variable constraints in con- 
junct ion with the fixed elemental constraint form a 
linearly independent set. Thus the corresponding 
3 x 3 matrix can be inverted and the composition 
determined in terms of the values of the constraints. 
Examples of inverse matrices are shown for the con- 
straints (EO, M, FO) and (EO, O, 03). Fixed values 
for all the constraints occur only when all possible 
reactions are zero and correspond to the case of 
Gibbs-Dal ton  mixtures. 

If only two constraints are fixed then the composi- 
tion is no longer fixed and a nonequil ibrium system 
will relax to the corresponding constrained-equili- 
brium state. For  the case of a constraint on the total 
moles, the constrained-equilibrium partial pressures 
obtained from Eq (7.2) are 

p = e x p ( - ~ °  _ 7 t% - ?zaz/) = bjF~l 'Ff ' .  
(7.23) 
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Const ra in t  matr ix o ( i , j )  

Species 

Constraint i ~  

EO 1 

MO 2 

FO 3 

0 4 

02 5 

03 6 

O 02 03 

I 2 3 

1 2 3 Fixed 

1 1 1 Voriobte 

1 0 1 

1 0 0 

0 1 0 

0 0 1 

Inverse matr ix (EO, MO, FO) o -1 ( i , j )  

Constraint 

Species j ~ ,  

0 1 

02  2 

03 5 

EO MO FO 

1 2 3 

-1 /2  1 1/2 

0 1 -1 

1/2 -1 1/2 

Inverse matr ix ( E 0 , 0 , 0 3 )  a -I ( i , j )  

Constraint  

Species j ~  

0 1 

02  2 

03 3 

EO 0 03 

1 4 6 

0 1 0 

112 - 1 / 2  -:512 

0 0 1 

FIG. 3. Matrix of constraint coefficients for O-system and 
examples of inverse matrices. 

Substituting (7.23) into the constraints (7.9) and 
(7.21) we obtain 

,bE = blr lF2 + 2b2F~F2 + 3b3F~F2 (7.24) 

and 

p = b , r , r :  + b : r~r~  + & r ~ r :  (7.25) 

in which we have used the a U coefficients in Fig. 3. 
From (7.25) 

F 2 = p/F~(b~ + b2F~ + b3r~) (7.26) 

and substituting in (7.24) we obtain the quadratic 
equation 

amF~ + buFl  + cu = 0 (7.27) 

where 

J. C. KECK 

a u = (3 - PE/p)bl (7.28a) 

bu = (2 - PE/p)b2 (7.28b) 

cu = (1 - PE/p)b3. (7.28c) 

For 1 ~ PE/P <~ 3, Eq. (7.27) has one non-negative 
root 

F m  = ((b~ - 4 a u c u )  jn - b u ) / 2 a u .  (7.29) 

Combining (7.29), (7.24), (7.23) and (7.15) we obtain 
the mass fractions 

r ju  = jbjF1-~l/(b~ + 2b2rm + 3b3r~u) (7.30) 

which are independent of r 2 and therefore also in- 
dependent of the absolute value of the pressure. 

In the numerical evaluation of (7.29) some care is 
required in the neighborhood of the singularities at 
PE/P = 1 and 3. In particular r i m  ~ (CM/aM) I/2 ~ 0 
aspE/p  ~ 1 and F m  ~ bu /aM --' O0 aSpE/p  ~ 3. In 
the latter case the mass fractions are given by 

Ym = j b i F ~ f f / ( b ~ F ?  2 + 2b2F ~  + 3b3). (7.31) 

For  the case in which the 'free oxygen' concentra- 
tion is fixed, the constrained equilibrium partial 
pressures are given by 

`bj = exp ( - f f  - 71alj - 73a3j) = bjr~'"r~" 
(7.32) 

and substituting in the constraints (7.9) and (7.22) we 
obtain 

= b~F~F 3 + 2bzF~ + 3b3F~F3 (7.33) b̀E 

and 

From (7.34) 

PF = biFiF3 + b3F~F3. (7.34) 

F3 = pF/Fl(bl + b3F~) (7.35) 

and substituting in (7.33) we obtain the quartic 
equation 

aFF 4 + bFF~ + cF = 0 (7.36) 

where 

aF = 2b2b3 (7.37a) 

bF = 2bib2 + (3pF/pE -- 1)b3Pv (7.37b) 

CF ~--" (PF/PE -- 1)bl/~E" (7.37C) 

For 0 ~< PF/PE ~< 1 Eq. (7.36) has one non-negative 
root 

Fw = (((b 2 - 4aFCF) 1/2 + bF)/2aF)l/2.(7.38) 

This completely determines the constrained-equili- 
brium state for the case of fixed elemental oxygen and 
'free oxygen' concentrations. Once again one must be 
careful in evaluating (7.38) in the neighborhood of the 
singularity atpF/pE = 1 where Fw ~ (cv /av)  1/2 ~ 0 

as pF/pE -'* 1. 
Plots of mass fractions obtained from the above 
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equations are shown for the case of  the total moles 
constraint as a function of  E O / M  = PE/P in Fig. 4. 
Also shown are the dimensionless Helmholtz  free 
energy obtained from (7.17) and the dimensionless 
potential 72 = - In F2. It can be seen that the com- 
position is an exceedingly sensitive function of  EO/M 
in the neighborhood o f E O / M  = 2 where the 02 mass 
fraction is a maximum.  As previously observed the 
composit ion plots in Fig. 4 are independent of  the 
absolute value of  the pressure and depends only on 
the temperature. Chemical equilibrium occurs at the 
point where the Helmholtz  free energy is a minimum.  
By virtue of(4.26),  this is also the point where ~'2 = 0. 

Similar plots are shown in Fig. 5 for the case of  the 
~free oxygen' constraint. Although the dependence of  
the mass fractions on FO/EO = PF/PE is very 
different from that in the previous case, the equi- 

librium composit ion and the min imum value of  the 
Helmholtz  free energy are exactly the same. 

Examples of  the trajectories along which an O- 
system subject to slowly changing constraints on total 
moles and 'free oxygen' will move are shown on the 
Y~ - }'3 plane in Fig. 6. The dotted diagonal lines 
with positive slopes correspond to states of  fixed total 
moles and are given by the equation 

Y3 = 3 ( 2 M / E O -  1 + Y,) .  (7.39) 

The lines with negative slope correspond to states of  
fixed 'free oxygen' and given by the equation 

Y3 = 3(FO/EO - }'1 ) (7.40) 

The solid curves are contours of  constant Helmholtz  
free energy. The constrained-equilibrium states 
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FIG. 6. Upper: Contours of constant Helmholtz free energy 
in the O 3-O mass fraction plane. The light lines show states 
of constant total moles M and constant 'free oxygen' FO. 
Constrained-equilibrium M states lie very close to the 03 and 
O axes; constrained-equilibrium FO states lie close to the O 
axis. Middle: Constrained-equilibrium states on an 
expanded 03 scale. M and FO curves cross at the equilibrium 
state. Lower: Helmholtz free energy A for constrained M 
and FO states as a function of M/EO and FO/EO. On the 
scale of the plot the curves are indistinguishable. A and B 
show states of pure 02 and O. D and F are the constrained- 
equilibriumM and FO states corresponding to the nonequili- 
brium state C. E is the equilibrium state of minimum Helm- 

holtz free energy. 

plotted in the two previous figures lie very close to the 
YI axis and are shown on a greatly expanded scale at 
the bottom of the plot. Also shown in the lower part 
of  the figure are the corresponding Helmholtz free 
energy curves. On the scale of the plot they are indis- 
tinguishable although, in fact, they differ slightly. 

The state A, which corresponds to pure O2, lies on 
the 'free oxygen' curve at the point FO/EO = 0. It 
can relax to chemical equilibrium along the FO curve 
from A to E. The state B, which corresponds to pure 

O, lies on the 'free oxygen' curve at FO/EO = 1 and 
on the total moles curve at MO/EO = 1. This state 
can relax to chemical equilibrium along either the FO 
or MO curves from B to E depending on which con- 
straint is imposed. 

On the other hand a nonequil ibrium state such as C 
which does not lie on a constrained curve will jump 
along a line of constant  FO/EO to the constrained FO 
state at F or along a line of constant M/EO to the 
constrained M state at D again depending on which 
constraint is imposed. It will then relax slowly to 
chemical equilibrium either through constrained FO 
states from F to E or constrained M states from D to 
E. 

The trajectories described above represent limiting 
cases approached when the time scale for relaxation 
along the slow path is very much longer than that for 
the fast path. In principle, any trajectory from the 
initial state to the equilibrium state for which the 
Helmholtz free energy never increases is possible. 

In concluding this section we note that if two con- 
straints are specified the composition of the system is 
uniquely determined and its evolution is governed by 
the full set of rate equations. Examples of inverse 
matrices for determining composition from the two 
linearly independent sets of constraints {EO, M, FO} 
and {EO, O, 03 } are given in Fig. 3. 

7.3. Rate-Controlled Constrained Equilibrium 

The principle reactions occurring in the pure O- 
system are listed in Table 3A along with their stoic- 
hiometric coefficients bk" Also shown are the changes 
produced by the reaction in: 
(1) number  of particles 

Avk 

(2) molar enthalpy 

a ~  

= ~ vjk (7.41) 
J 

= ~-" vjk/4~j (7.42) 
J 

(3) dimensionless Gibbs free energy 

A/~ ° = ~ vjk/3 ° (7.43) 
J 

and (4) the log of the equilibrium constant  based on 
pressure 

logKp, = ~ v j k l o g p j  = - - A ~ ° / l n i 0 .  
i 

(7.44) 

The constraint coefficients bik and the parameters 
required to determine the reaction rates are given in 
Table 3B. These include: 
(1) the parameters log A ÷ and E ÷ necessary to 
compute the forward exothermic rate constant in the 
Arrhenius form 

log K + = log A + - E+/RTln 10; (7.45) 
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TABLE 3. Principle reactions for species in the O-system (units: cc, mol, sec, K, kcal) 
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A. Thermodynamic data 37 (T = 4000 K, RT = 7.9488 kcal/mol) 
Species: O 02 03 

k Reaction vl, V2k V3k Av AH ° A~ ° l og  Kp 

1 O + O + M*--~ O 2 + M --2 1 0 - 1  --123.05 0.79 -0.34 
2 O + O 2 + M ~--~ O 3 + M - 1  - 1  1 --1 --29.93 12.77 --5.55 
3 O + O3 ~ 02 + Oz - 1 2 - 1 0 -96.12 - 12.05 5.24 

B. Rate parameters 2s (R 0 T = 32,824 atm. cc/mol) 
Constraint: EO M FO 

k Reaction blk b2k b3k log A + E + log k + log K c log k -  

1 O + O + M  *--, 02 + M 0 - 1  - 2  13.8 0.0 13.8 5.2 8.6 
2 O + 02 + M ~ 03 + M 0 - 1  0 13.5 --0.9 13.5 0.0 13.5 
3 0 + 03 ,--* 02 + 02 0 0 - 2  13.5 5.7 13.2 5.2 8.0 

(2) the log of  the forward rate constant k ÷ ; 
(3) the log of  the equilibrium constant based on con- 
centration; 

log K~k = )-'yjk log [ ~ ]  = log Kpk -- Ark log R 0 T 

and (4) the log 
constant 

(7.46) 

of  the reverse endothermic rate 

log k~- = log k~- - log K,k. (7.47) 

The one-way reaction rates can be conveniently 
obtained from the expressions 

logr~- = logk~- + ~ v ~  l o g [ ~ ]  
i 

and 

(7.48) 

log r~- = log kk- + ~ v~ log [~Tj] (7.49) 
J 

and the net forward reaction rate is then 

r k = r~- -- r~-. (7.50) 

The full set of  rate equations can now be written 

d[O]/dt = - 2rl - r_, - -  r 3 (7.51) 

d[O2]/dt = rl - rz + 2r3 (7.52) 

d[03]/dt = r 2 - r, (7.53) 

and because of  their nonlinear character these must be 
integrated numerically. A useful check on any 
reaction scheme is to make sure elements are 
conserved, i.e. d([O] + 2[Oz] + 3[O3])/dt = 0, and 
this is easily seen to be true in the above case. 

To carry out a rate-controlled constrained-equili- 
brium (RCCE) calculation we must now identify a 
suitable constraint and an examination of  Table 3B 
shows that by far the smallest rate constants are those 
for the reverse of  reactions 1 and 3. It can also be seen 
from the b~k coefficients that these are the reactions 
responsible for changes in the "free oxygen' constraint 
FO. If their rates were identically zero FO would be a 

constant. On the other hand reaction 2 which changes 
the total moles M can readily relax any nonequili- 
brium state to a corresponding constrained-equili- 
brium state having the same value of  FO. For  our 
illustration we shall therefore choose FO as our con- 
straint and integrate the rate equation 

d[FO]/dt = - 2rl - 2r2 (7.54) 

using the constrained-equilibrium composit ion 
obtained from (7.38), (7.35) and (7.32) to evaluate the 
reaction rates 1 and 2. No information about the rate 
of  reaction 3 is required other than the assumption 
that it is faster than 1 and 2. Also the total number of  
equations required is 2 (1 differential and 1 algebraic) 
rather than the 3 required for either a comprehensive 
or steady-state treatment. 

Since Eq. (7.54) is separable its integration can be 
reduced to quadratures. However to facilitate com- 
parison of  the results it is more convenient to use the 
same numerical routine to integrate both the full set of  
Eqs (7.51)-(7.53) and the constraint equation (7.54). 
The calculations were carried out using the DASSL 34 
integrator run on a MacPlus. 

The three initial states A, B, and C in Fig. 6 were 
considered and the results are shown in Figs 7-9 
plotted as function of  log time (sec). The properties 
calculated were the species mass fractions Y, the 
degree of  disequilibrium q5 d and dimensionless 
entropy production aR/EOR for the reaction, the di- 
mensionless Helmholtz  free energy A/EORT, the 
pressure p, and the dimensionless energy E/EORT. 
The continuous curves show the results of  integrating 
the full set of  rate equations (7.51)-(7.53) and the 
points are the results of  integrating the rate equation 
for the constraint (7.54). 

The results for the initial state A are shown in Figs 
7a and b. These correspond to the dissociation of  pure 
O:. It can be seen that even though all reactions are 
out of  equilibrium in the reverse direction (tkd < 0) at 
early times, the mass fractions and entropy produc- 
tion for the major species O and 02 and the ther- 

JPECS 16:2-D 
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and entropy production a R for the reactions are shown as a 
function of log time. Curves show exact results; solid points 
show constrained results using reactions I and 3; open points 

show RCCE results using only reaction 1. 

modynamic properties A, p and E are well represented 
over a span of 6 orders of magnitude in time. During 
the final approach to equilibrium reaction 2 goes to 
equilibrium and the constrained values for the minor 
species 03 approach the exact values. It should be 
noted that degree of disequilibrium ~b~ and the 
entropy production 5R2 for reaction 2 are identically 
zero in the RCCE case and that ~dl and ~ba3 are equal. 
That this should be true can be seen by substituting 
the values of bjk from Table 3B into the expression 

~bak = bike'1 + b3k?a (7.55) 

obtained from (5.32). This gives ~bd: = 0 and 

q~dl = ~bd3 = -- 2y3 and it follows from (5.35) that 
5R2 = 0. It may also be noted that the entropy pro- 
duction is a measure of the thermodynamic impor- 
tance of a reaction and that aR~ is roughly an order of 
magnitude larger than trR2 and o'R3. On this basis it can 
be anticipated the reaction 1 is the rate-controlling 
reaction and the only one which really needs to be 
included. As can be seen from the open points, this is 
indeed the case. 

The results for the initial state B are shown in Figs 
8a and b. These correspond to the recombination of 
pure O. In this case, reaction 2 is close to equilibrium 
over a very much wider range and even the mass 
fraction of the minor  species 03 is well represented. 
The reason there are no points for the RCCE calcula- 
tions at very early times is because the initial step size 
chosen by the DASSL integrator was several orders of 
magnitude larger for the RCCE calculations than for 
the exact calculations. The first point shown is the first 
point calculated. 
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FIG. 7b. Helmholtz free energy A, pressure p, and energy E 
corresponding to Fig. 7a. 
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Flo. 8a. Comparison of exact and FO RCCE calculations for 
O recombination. Conditions and code are the same as in 
Fig. 7a. the solid and open points are indistinguishable in 

these calculations. 

In the two previous examples the initial states A 
and B were already in constrained equilibrium. In our 
final example the initial state C corresponds to a 
nonequilibrium state for which the mass fractions of 
O, 02 and 03 are 0.3, 0.4 and 0.3 and the constraint 
FO/EO = 0.4. In this case one would not expect 
RCCE to be a very good approximation because the 
initial state is so far from the corresponding con- 
strained state. Nevertheless as can be seen in Figs 9a 
and b all of  the properties are reasonably well re- 
presented over the entire time scale on which two 
calculations overlap and are very well represented 
over the decade in which the system approaches final 
equilibrium. Once again the first point plotted is the 
first point calculated. It illustrates the discontinuous 
jump at zero time from the initial nonequilibrium 
state C to the corresponding initial constrained-equili- 
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brium state F in Fig. 6. It is coincidental that the first 
point occurs at approximately the time when reaction 
3 goes to quasi-equilibrium. Tighter tolerances on the 
integration would have produced points at earlier 
times. 

In concluding this discussion we note that in all the 
cases above the RCCE calculations had a significant 
time advantage over the exact calculations. For a 
relative error tolerance of 1E-3 and an absolute error 
tolerance of IE-8 the running time on the MacPlus 
was approximately 20 sec for RCCE and 50 sec for the 
exact calculations. Decreasing the relative tolerance 
to 1E-5 produced little change in the running time for 
the RCCE calculations but increased that for the 
exact calculations by about a factor of 2. One would 
expect that this advantage would become even greater 
for larger systems where the ratio of the number of 
required constraints to the number of species should 
be very much smaller. Whether this will prove to be 
the case depends very much on the efficiency of the 
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Conditions and code are the same as in Fig. 7a. 

numerical algorithm available for computing the con- 
strained-equilibrium composition. The present cal- 
culations are quite encouraging, however. 
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FIG. 9b. Helmholtz free energy A, pressure p, and energy E 
corresponding to Fig. 9a. 

dent reactions many of which involve trace species 
such as N atoms as collision partners. The problem 
has also been treated using conventional methods 
discussed in the preceding sections. In all the cases, 
truncation of the species and reaction rate list has 
been used to siplify the calculations. Comparisons 
between these methods and the constrained equi- 
librium method will be discussed below. 

8.1. Reactions in Combustion Products 

The rate-controlled constrained-equilibrium 
method has been applied with considerable success to 
the problem of predicting CO and NO formation in 
the combustion products from internal combustion 
engines and burners. These species, which are 
important air pollutants, are formed in relatively high 
concentrations at temperatures T t> 2000K. Their 
removal is controlled by strongly temperature-depen- 

8.1.1. CO freezing in a steady flow burner 

The RCCE method has been used by Morr and 
Heywood 9 to interpret their measurements of CO 
concentrations in a steady flow cylindrical burner. 
This work illustrates in a dramatic way the effect of 
using different constraints as well as the effect of 
combining constraints. 

The experimental geometry is shown schematically 
in the upper part of Fig. 10. The mean temperature 
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FIG. 10. Temperature and CO profiles in a steady flow 
cylindrical burner. 9 

profile along the axis of the burner and the experimen- 
tal and theoretical results are shown in the lower part. 
It  can be seen that upstream of the heat exchanger 
where the temperature is high, the measured CO mole 
fractions agree well with the calculated equilibrium 
values. However, downstream of the heat exchanger 
where the temperatures are low, the measured CO 
levels far exceed the equilibrium value giving evidence 
for the freezing of CO oxidation reactions. 

To predict the CO levels in this highly nonequili- 
brium region, Morr and Heywood carried out a 14 
species RCCE calculation involving two constraints. 
The first was that on the total moles of gas 

M = N2 + H20 + CO2 + CO + 02 + . .  (8.1) 

controlled by the dissociation and recombination 
reactions 

(ru) M + H + H ~ H :  + M (8.2) 

(r~2) M +  H + O H , - - , H 2 0  + M (8.3) 

(ru) M + H + 02 ~ H O 2  + M (8.4) 

(rl4) M + OH + OH ~+ H202 + M (8.5) 

and governed by the rate equation 

dM 4 
= if] (rlk - -  r ~ ) .  ( 8 . 6 )  

dt t 

The results obtained when this constraint was used 
alone are shown by the curve marked (CO)M in Fig. 
10. Although the (CO)M levels are substantially higher 
than the equilibrium levels (CO)cq they are still far 
below the measured values. 

The second constraint used was that on the moles 
of CO which was assumed to be controlled by the CO 
oxidation reactions 

(r20 OH + C O ~ C O 2  + H (8.7) 

(r22) 02 + CO ~ C02 + 0 (8.8) 

(r23) NO2 + CO ~ CO2 + NO (8.9) 

(r24) M + O + CO ~ CO2 + M (8.10) 

(r25) M + H + C O ~ H C O  + M (8.11) 

and governed by the rate equation 

dCO 5 
d--'~- = ~ (r~ - r~). (8.12) 

1 

The results obtained when this constraint was used 
alone are shown by the curve marked (CO)co in Fig. 
10. It gives CO levels which substantially exceed the 
measured values. 

The effect of imposing both constraints simul- 
taneously is shown by the remaining curve marked 
(CO)M,CO. Although this curve is slightly lower than 
the measured values, the agreement is well within the 
combined uncertainty of the experimental measure- 
ments and the rate constants used. Additional con- 
straints could in principle have been employed to 
improve the agreement but no further useful informa- 
tion would have been obtained. 

The reason for the difference between the (CO)co 
curve and the (CO)u,co curve is due to the effect of  the 
total moles constraint which greatly increases the 
number of free radicals, especially OH, in the gas. 
This in turn increases the rate of the most important 
CO oxidation reaction r2~. 

8.1.2. NO concentrations in an I.C.E. 

A calculation of NO formation and removal in an 
internal combustion engine (I.C.E.) has been carried 
out by Keck and Gillespie) One of the objectives of 
this work was to compare a RCCE calculation with a 
corresponding steady-state calculation and the results 
are shown in Fig. 11. In the RCCE calculations 14 
species and two constraints were considered. The first 
constraint, was that on 'fixed nitrogen'. 

FN = NO + NO2 + NH + N (8.13) 

controlled by the reactions 

(r31) N + NO *-* N2 + O (8.14) 

(r32) N + N H ~ N 2  + H (8.15) 

(r33) NO + NO ,--* N20 + O (8.16) 

(r34) NH + N O ~ N 2 0  + H (8.17) 

(r35) N2 + NO + N O ~ N 2 0  + N20 (8.18) 

and governed by the rate equation 

dFN 5 
- = 2 ~ ( r ~  - r ~ ) .  ( 8 . 1 9 )  

dt 
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power stroke of an I.C.E) 

and 

The mole fractions of NO, O and N obtained in a 
calculation in which this was the only constraint are 
shown by the solid curves in Fig. 11. The freezing of 
nitrogen fixing reactions can clearly be seen by com- 
parison of the (NO)N and (N)N with the corresponding 
equilibrium values shown by the short dashed curve. 
By way of contrast the (O)N levels remain close to o.z~ 
their equilibrium values, a. 

z 
The second constraint considered was that on total o 

moles M. It can be seen in Fig. 1 1, that the addition ~-~4°°° 
of this constraint had no effect on the single constraint 

I,LI 
curves indicating that dissociation and recombination ~, 
reactions were in equilibrium throughout. This was 8 
checked by a single constraint calculation involving 
only total moles and found to be the case. 

20oo The corresponding steady-state calculations were _~ 
based on the engine thermodynamic model of Lavoie, 
Heywood and Keck. 39 The major combustion z 
reactions were assumed to be in equilibrium and the 

w 

(8.20) 

(8.21) 

(8.22) 

extended Zeldovich mechanism 

(rzl) N + NO ~-~ N 2 -k- O 

(rz2) N + 02 ~-~NO + O 

(rz3) N + OH ~ NO + H 

was used to describe the kinetics of N and NO. The 
rate equations used for these species were 

dN 
d'--7 = r~] + r• + r• - r~ 

- rz~ - r ~  (8.23) 

dNO 
= r f i -  r ~ -  r ~ -  r + 

dt 

+ 
+ r~2 + r5 

and the steady-state assumption dN/dt  = 0 was 
made for N. As can be seen from the long-dashed 
curves in Fig. 11, the steady-state NO concentration 
(NO)ss was lower than the RCCE concentration 
(NO)N early in the cycle when it was being removed. 
It can also be seen that the N atom concentration 
behaved in just  the opposite way. These discrepancies 
are due to the fact that the reactions rz2 and rz3 
included in the steady-state model were not  sufficient- 
ly fast to maintain relative equilibrium between the 
fixed nitrogen species N and NO. Which of the two 
calculations gives the better approximation is difficult 
to say without a comprehensive calculation. The list 
of species and reactions included in the steady-state 
calculation is of course highly trunacted and parallel 
reactions would tend to drive the fixed nitrogen 
system closer to a constrained-equilibrium state. In 
any case, as can be seen in Fig. 12 which shows the 
average NO concentration in the exhaust of  an I.C.E. 
as a function of fuel/air ratio, either calculation 
predicts the experimental results reasonably well. The 
steady state predictions shown by the dashed curve 
are based on unpublished work by Keck and 
Gillespie. The RCCE predictions shown by the solid 
curve were obtained by Delichatsios and Keck) ° The 
experimental points are from Heywood, Mathews 
and Owen. I I 
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FIG. 12. Comparison of predicted and measured average NO 
concentration in exhaust of an I.C.E. as a function of fuel/air 

equivalence ratio. ~0 
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8.1.3. Degree o f  disequilibrium in LC.E. combustion 
products 

Considerable insight into the validity of the RCCE 
method as applied to NO and CO formation and 
removal in internal combustion engines can be gained 
from the results of a 13 species 17 reaction 'exact' 
calculation carried out by Newhall. 4° 

Of particular interest is the degree of disequilibrium 
calculated for 14 reactions during the expansion 
stroke and shown in Fig. 13. It can be seen that the 5 
exchange reactions involving the C/H/O system and 
the dissociation reaction M + N20 ~ N2 + O 
+ M involving the most abundant species N2 are in 
equilibrium throughout. The 5 remaining dissociation 
reactions and the 3 exchange reactions involving NO 
all exhibit highly nonequilibrium behaviour, however. 
At first sight it is not obvious that the behavior of the 
nonequilibrium reactions is related in any simple way. 
In fact, only 2 constraints, one on total moles M and 
another on NO are necessary to obtain an excellent 
approximation to the behavior of the system and the 
combinations of the Lagrange multipliers required to 
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fit the various reactions are given in the figure. If 
desired, a perfect fit can be obtained with 2 additional 
constraints on N and H. 

These results indicate that the previously discussed 
RCCE calculations of NO concentrations in I.C.E. by 
Keck and Gillespie could have been improved by 
taking the constraint to be NO rather than fixed 
nitrogen. 

8.2. Primary Combustion Reactions 

The first application of the RCCE method to 
primary combustion processes was made by Takeda, 
Koshi and Matsui ~3 who studied the homogeneous 
oxidation of hydrogen and methane in constant 
volume adiabatic vessels. Similar more detailed 
studies of hydrogen oxidation have also been reported 
by Law, Metghalchi and KeckJ 2 The studies provide 
considerable insight into the method and are very 
encouraging with respect to potential applications to 
more complex reacting systems. 
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TABLE 4. Hydrogen-oxygen reaction mechanism and rate data 41 

Units: cm 3, mol, sec, K, kcal 
Forward rate constant: k + = AT' exp ( -  E,,/RT) 

Reaction AH°3oo Log A n E,, 

H + 02 + M = HO., + M - 4 7  15.22 0 -1.00 
OH + O H  + M = H202 + M -15.39 14.96 0 -5.07 
H + O + M = OH + M -102.23 16.00 0 0.00 
H + H + M = H2 + M -104.20 15.48 0 0.00 
O + O + M = 02 + M -119.12 15.67 -0.28 0.00 
H + OH + M = H20 + M -119.33 23.15 - 2  0.00 
O + OH = 02 + H -16.89 13.12 0 0.68 
HO 2 + HO 2 = H202 + 02 -42.53 13.00 0 1.00 
HO 2 + O = OH + 02 -55.13 13.70 0 1.00 
HO 2 + H = H20 + 02 -57.10 13.40 0 0.70 
HO 2 + OH = H20 + 02 -72.23 13.70 0 1.00 
H + OH = O + H 2 -1.97 9.92 1 6.95 
H202 + H = HO~ + H2 -14 .57  12.23 0 3.75 
H 2 + OH = H + H20 -15.13 13.34 0 5.15 
OH + OH = O + H20 -17.10 12.50 0 1.10 
H202 + OH = H 0 2 +  H20 -29.70 13.00 0 1.80 
HO 2 + H = O H  + OH -38.24 14.40 0 1.90 

M F V  A V 

- 1  0 - 1  
- 1  - 2  - 2  
-I -2 -2 
-I -2 -2 
- - I  - -4  - -4  
- 1  - 2  - 2  

0 - 2  - 2  
0 - 2  0 
0 - 2  - 1  
0 - 2  - 1  
0 - 2  - 1  
0 0 0 
0 0 - 1  
0 0 0 
0 0 0 
0 0 - 1  
0 0 1 

8.2.1. H2/02  sys tem 

Because they are somewhat more carefully doc- 
umented, the studies of  Law, Metghalchi and Keck 
will be discussed first. These studies were carried out 
for stoichiometric mixtures of  H2 and 02 in a constant 
volume adiabatic chamber at initial temperatures 
Ti = 900, 1100 and 1500 K and initial pressures 
p~ = 0.01, 0.1, 1.0 and 10 atm. Eight species H, HO, 
HO2, H2, H20,  H202, O and 0 2 governed by 17 
reactions were included in the kinetic model. The 
reactions used are listed in Table 4 along with their 
standard reaction enthalpies A/-/~30o and the 
parameters A, n and E~ for calculating their exother- 
mic rate constants in the form 

k + = A T '  exp ( -  E a / R T )  (8.25) 

where T is the temperature and R is the molar  gas 
constant. The values of  AH°30o were obtained form the 
J A N A F  tables 37 and the values of  A, n and E~ were 
taken from the compilation of  Pitz and Westbrook. 4~ 
The reverse endothermic rate constants were cal- 
culated using the rate quotient law 

k~ / k ;  = Kck (8.26) 

where the equilibrium constant K~k based on con- 
centration was computed from data in the J A N A F  
tables. This ensured that the system relaxed to the 
correct stable equilibrium state. 

Detailed calculations were carried out by integrat- 
ing the set of  eight rate equations for the species in 
conjunction with the energy equation using the 
LSODE routine. 42 R C C E  calculations were carried 
out using constraints on: 
the total moles 

M = H + HO + HO2 + H2 + H20  

+ H20:  + O + O: 

(8.27) 

the free valence 

F V  = H + HO + HO2 + 2 0  (8.28) 

and the active valence 

AV = H + HO + 2 0 .  (8.29) 

The coefficients bik appearing in the rate equations 
(5.12) for these constraints are given in the last three 
columns of  Table 4. One and two constraint cases 
were investigated. The rate equations were integrated 
using the same rate constants employed for the 
detailed calculations. No  energy equation is required 
for these calculations since the temperature is cal- 
culated by the C N S E Q L  43 code used to determine the 
constrained-equilibrium composit ion at each time 
step. Integration times for the one and two constraint 
cases were respectively 2 and 4 times those required 
for the detailed calculations so the algorithm used 
offers no time advantage for a system as simple as the 
H /O system. However, as previously mentioned it 
should be possible to improve this situation. 

Typical results for the one-constraint calculations 
are presented in Fig. 14 which shows the temperature-  
time curves for both low and high pressure regimes. 
The curve labelled M refers to the total moles con- 
straint. The free valence F V  and active valence A V 
curves are identical to the accuracy with which they 
can be plotted. The curve labelled F S  is the result of  
integrating the full set of  9 equations in the detailed 
model. As might be expected no single constraint is 
sufficient to reproduce the detail calculations with any 
degree of  accuracy although the M constraint shows 
some qualitative similarity. All the curves relax to the 
correct equilibrium state but the initial behavior is 
incorrect. 

The requirement that the initial state by correctly 
reproduced is an important  condition which may be 
used in the selection of  the constraints. This require- 
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FIG. 14. Temperature-time curves for H2/O 2 mixtures: One 
constraint calculations M = total moles, FV = moles free 
valence, A V = moles active valence, and FS = full set of 

rate equations.:2 

ment is satisfied by the two-constraint calculation 
examples which are shown in Fig. 15. It can be seen 
that for the p~ = 1.0 atm. case, the combinations 
M + F V  and M -I- A V give similar results which 
reproduce the shape of  the detailed temperature-time 
curve FS quite well. The ignition delay times are a bit 
too short however. In the Pi = 10 atm. case the 
M + A V combination still gives a reasonable 
estimate o f  the ignition delay time but the M + F V  
combination is a miserable failure. The reason for this 
has not yet been fully established but a strong pos- 
sibility suggested by the b~k values in Table 4 is that the 
F V  constraint allows the rate limiting reaction 13 to 
come to equilibrium whereas the A V constraint does 
not. It is anticipated that the addition of  a third 
constraint to the M + A V combination would 
improve the agreement still further but calculations 
for three constraints have been deferred pending im- 
provements in the integration routines. 

Additional results for the M + A V combination 
are presented in Fig. 16 which shows the temperature 
as a function of  the product o f  the time and the initial 
pressure for an initial temperature of  1500 K and 
initial pressures o f  0.01, 0.1, 1.0 and 10 atm. It can be 
seen that the overall agreement with the detail calcula- 
tion is reasonably good. The initial temperature rise 
from 1500 to 1710 K is controlled by the A V  con- 
straint and obeys binary scaling. The later tem- 
perature rise is controlled by the M constraint and 
shows the expected additional pressure dependence. 
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The results indicate that to improve the agreement an 
additional constraint is needed in the ignition delay 
interval and it is probable that this involves reaction 
12 in Table 4. 
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A summary of  the results is shown in Fig. 17 where 
the product of  the ignition delay time z and the 
density ratio P/Po has been plotted versus the initial 
pressure on a log-log scale. The points are the results 
of  the two constraint M + A V calculations and the 
curves are the result of  integrating the full set of  nine 
equations for the detailed model. Also shown is the 
dividing line between low and high pressure regimes 
given by the condition 2k ;  = k~ [M]. It can be seen 
that in all cases the agreement between the R C C E  and 
detailed calculations is within 40%. The results of  the 
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FIG. 19. Time dependent hydrogen atom concentrations for 
the same conditions as Fig. 8) 3 

detailed model are also in excellent agreement with 
prior work. 44 

Except for the constraints used, the calculations of  
Takeda, Koshi and Matsui are almost identical to 
those of  Law, Metghalchi and Keck. The constraints 
included in this study were: the total moles of  mixture 
(XM), the pressure p and the individual species con- 
centrations (O) and (02). 

Typical t ime-dependent profiles for the tem- 
perature and the hydrogen atom concentration are 
shown in Figs 18 and 19. It can be seen that no single 
constraint is sufficient to reproduce both profiles with 
any degree of  accuracy but that dual constraints on 
either p and (02) or (XM) and (02) do a remarkably 
good job. It should be noted in this connection that a 
constraint on the pressure is not really acceptable 
since pressure is one of  the variables one wishes to 
predict. It should also be noted that there appears to 
be some problem with the (O) and (02) profiles since 
these do not go to the correct equilibrium values as 
required by the R C C E  method. 

8.2.2. CH~/O2 System 

R C C E  calculations for stoichiometric mixtures of  
CH4 and 02 in constant volume adiabatic chambers 
have also been carried out by Takeda, Hoshi and 
MatsuiJ  3 Sixteen species and 42 reactions were 
included in the kinetic model which was based on 
previous work. 45 The constraints considered were: 
pressure, total moles, and the individual species con- 
centrations (CH4), (O2) and (CO). Typical time- 
dependent profiles for the temperature and CO con- 
centration are shown in Figs 20 and 21. It can be seen 
that in this case three constraints on (CH4), (O2), and 
(XM) are sufficient to reproduce the exact solution 
with acceptable accuracy. This corresponds to a 
reduction in the number of  differential equations 
required to describe the system from 17 to 3. Unfor-  
tunately no information on the computer  time 
required to integrate these two sets of  equations was 
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(3) Since they enter explicitly as constraints, the 
conservation laws are satisfied at all times and 
are not  subject to round-off  errors during inte- 
gration. 

(4) The entropy production for a system relaxing 
through a sequence of  constrained equilibrium 
states is non-negative at all times and the 
system always approaches the correct stable 
equilibrium state. 

(5) The accuracy of  the calculations can be syste- 
matically improved by the addition of  con- 
straints one at a time and they become 'exact '  
when the number of  independent constraints 
equals the number of  degrees of  freedom. 

(6) The method can be extended to include con- 
straints imposed by steady state reactions, 
selection rules, body forces and diffusion. 

(7) The method can be applied to extremely 
complex systems and is expected to improve as 
the size of  the system increases. 
The only obvious disadvantages of  the method 
are: 

(1) Efficient algorithms for integrating the differen- 
tial rate equation for the constraints or 
conjugate Lagrange multipliers need to be 
developed. 

(2) The constraints must be identified. 
In the opinion of  the author, the last disadvantage is 
really an advantage since it forces one to think before 
embarking on elaborate calculations! 
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given so it is not  clear which of  the methods was more 
efficient. It would appear however that as the size and 
complexity of  the systems considered increase, the 
R C C E  method will eventually become the winner. 

9. A D V A N T A G E S  A N D  D I S A D V A N T A G E S  O F  RCCE 

The rate-controlled constrained-equilibrium 
method offers a number of  advantages over other 
techniques currently in use for treating reactions in 
complex systems: 

(1) Since in general the number of  constraints 
necessary to determine the state of  a complex 
system to a specified degree of  accuracy is very 
much smaller than the number of  degrees of  
freedom of  the system, there are fewer differen- 
tial equations to integrate. 

(2) Only the rate constants for the fastest rate- 
controlling reactions are needed to carry out  a 
calculation and these are the most likely to be 
known. 
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