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Abstract

An approximate analytic technique for solving the
transport equations describing the diffusion region of
a thermionic energy converter operating in the ignited
mode has been developed. The method involves
assuming a parametric form for the electron produc-
tion and integrating the transport equations to deter-
mine the electron concentration, potential, and tem-
perature distribution. These distributions are then
used to determine the electron production from the
ionization equation Finally the parameters are
adjusted to make the assumed production match the
calculated production as closely as possible. In our
initial investigations we have used a three parameter
function of the form
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The theory predicts qualitatively all the observed
features of converter operation. In particular it
predicts an optimum value for pd at which the arc
drop in the plasma is a minimum. Limited quantita-
tive comparisons also show reasonable agreement
with experiments. The method may be systemati-
cally improved by assuming more complicated func-
tional forms for the production term.

I. Introduction

The problem of determining the arc drop in the
plasma of a thermionic energy converter operating (1)
in the ignited mode has been treated by many authors.
The basic equations governing the transport phenom-
ena in the diffusion region of the plasma have been
derived by Wilkins and Gy‘ftopoulos{z) and appropriate
boundary conditions which apply across the sheaths
have been set forth by Wilkins and McCandless. (3)

The solution of these equations has proved to
be exceedingly difficult, however. The analytic
techniques 4) which have been presented previously
employ numerous simplifying approximations which
in general limit them to pressure-spacing products
pd considerably greater than those of practical
interest for power converters. On the other hand,
the numerical "shooting" techniques (5) which have
been developed are subject to severe instabilities
which make them exceedingly difficult and expensive
to carry out. Moreover, numerical solutions give
very little insight into the relative importance of the
various physical phenomena and parameters which
determine converter performance. Finally, none of
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the existing treatments, either analytic or numerical,
has predicted the experimentally observed optimum

value of the pd product at which the arc drop across
the plasma for fixed current is a minimum.

In this paper we present an approximate analytic
method for solving the converter plasma equations
which is very much simpler than the numerical
"ghooting" techniques and considerably more accurate
than previous analytic treatments. It is based on
assuming a parametric form for the net electron
production in the converter. The transport equations
may then be integrated to obtain the electron concen-
tration, temperature, and potential energy distribu-
tions. These may in turn be used to calculate the
corresponding net electron production from the
ionization equation. Finally, the parameters in
the assumed form are adjusted to make the assumed
and calculated production agree as closely as possible.
The success of the technique is determined by accu-
racy of the fit obtained. Systematic improvement of
the results can be made by introducing progressively
more complicated functional forms for the assumed
production.

The basic equations and boundary conditions used
in our analysis are presented in section II. The
method of solution and the mathematical results are
given in section III.' The key element in the solution
is a transcendental equation. A graphical method of
solving this equation and some illustrative results
are given in section IV, Finally section V briefly
summarizes our conclusions.

II. Mathematical Model

A, Transport Equations

We shall consider a one dimensional three compo-
nent plasma consisting of ion (i), electron (e), and
neutrals (n). We assume low degrees of ionization so

that
n =n <<n_, (2. 1)
e i n
where n, is the concentration of species o, and
equality of ion and neutral temperatures so that
B8, =906 2.2
i n ( )

where 8,4 = kT, For such a plasma, the equation of

state is

p=n_(6_+6 )+n O =n O (2. 3)
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and the transport equations are
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where Iy, Q) Py and _ are the particle flux, energy
flux, pressure and mo%ility of species ¢y, S is the net
ionization rate, and i is the potential energy of an
electron. The mobilities are related to the collision

cross-sections o g for species & and B by

i
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where my, is the mass and
— 1/2 s
c, = (8 Gm/'rrma) (2.12)

is the mean thermal speed of species . Note that in
the above equations we have omitted the thermal dif-
fusion terms and the forces arising from the transfer
of directed momentum from electrons to ions. We
have also assumed that the energy flux carried by

ions is negligible compared to that carried by neutrals.

If we further assume that radiation losses and
energy transfer from electrons to heavy particles
are small, then we have for neutrals

dQn/dx 0 (2=13)

and for electrons

d Qe/dx ==V, (2. 14)
where Vi is the ionization potential.

For collisional ionization and threebody recom-
bination the net ionization rate is

2 2
S_Sr n (nEi -a, ) {2.15)
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is the threebody recombination rate constant{ ) and
12 ™ o, 3/4 -vi/zae
“n_=n ——-——) e (2.17)
s n \ 2
2r h

1

is the Saha electron concentration. Over a reason-

able range about a reference temperature 6% n_ can
: s

be well approximated by
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B. Boundary Conditions

We assume a motive diagram of the type shown in
Figure 1. Under these conditions the emitter boun-
dary conditions are (3)

-v_/e
E’ Teo
1.‘neo TE T {Reo - 2'eo} € ! (2.2
I. =-2R, , (2.22)
io io
=T - - T
Q,, =Ty (26 + Vp) - (g - T, ) (20 +Vp), (2.23)

and the collector boundary conditions are

T = (R 4 +%Fed} e-vc/e‘“i, (2. 24)
1d:2Rid' (2. 25)
Qed=1‘ed(26ed+vc+wd), (2. 26)

where Ty is the emitter saturation current and
R&:nqzr/4 (2.27)

is the random current for species o. Note that we
have assumed back emission from the collector is
negligible.

The arc drop obtained from inspection of
Figure 1 is

= - = - - 2.2
v Vo v VE v 7 ( 8)

D C d

where '
(2.29)

vo:(’bE-qbc

is the contact potential.

I1I. Method of Solution

A. Temperature Distribution for Neutrals

We shall begin by considering the temperatures
of the neutrals since this determines both the ion
temperature and the neutral particle density which
will be needed later. Substituting (2. 3), (2. 11),
and (2. 12) into (2. 8) and integrating we find for
constant T
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whe';'_e
n=x/d (3.2)
is a dimensionless distance and
e = ec/eE (3. 3)

is the ratio of collector and emitter temperatures.

The corresponding heat flux carried by the
neutrals is

ge_ 1/2
3/
€ 2] (3. 4)

B. Electron Density Distribution

To obtain an approximate analytic solution for
the electron concentration, we assume that the net
electron production S given by (2. 15) can be approxi-
mated by a function of the form

S* = A tanh (11 2) gech® (13 (3. 5)
b b
where A, a, and b are parameters which w1ll be
adjusted later to give the beat fit of S and S™
Obviously, this choice of §% is by no means unique
and more complicated functional forms could be used
which might give better results. The reasons for
chosing this particular form for our initial investiga-
tion are 1) it has a shape which is physically reason-
able,2) it approximates quite well the forms obtained
in previous numerical investigations, and 3) it is
relatively simple and convenient to integrate. It
should be emphasized, however, that the success of
this or any other form for S* can only be determined
a posterior by assessing the accuracy of the fit to S.

Substituting S* for S in (2. 4) and integrating
we obtain

=T -T
i e
1 2n+a. 2.1+a
= - h. -
rid+2Abd [tanh™ ( ) = tanh ~ (—— 5 )] (3. 6)

where T = J/e is the converter current divided by the
electronic charge. Adding (2. 5) and (2. 6) and using
(2.9),(2.10), (2. 12),(2. 25),(2. 27) and (3. 2) gives
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and we used the approximation Fe = [Lq- Note dg; and

d;, are essentially the converter spacing divided by
the electron-ion and ion-neutral mean free paths
respectively while €.; is the ratio of the ion-neutral

to electron-neutral mean free paths.

Before attempting to integrate (3. 7) it is useful

to estimate the magnitude of the coefficients d_;, d;,
and €.+ Using the cross-sections(7) summarized
in Table 1 and the reference conditions A
1,5 TE ~ 4,0 TC ~2800°K and "'~ R_ 4 we find
d_, =~ Jd (mil a/cmz}/'?OO, (3.13)
din = 1.1 pd (mil torr), (3.14)
1/3, A
and € J (3. 15)

where we have assumed Gi = ’\J'GE ec

It can be seen from (3. 13) that for Jd << 700 mil
a/cmz, which is the range of interest for most
practical converters, the term proportional to dei
in (3. 7) will be small. It can also be seen from (3. 15
that the dependence on €; is relatively weak. Thus,
since the temperature dependence of ojp is relatively
weak, it is a good first approximation to drop the
term proportional to d_; and assume d;, and €,; are

ei
constant. (3. 7) can then easily be integrated to give
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d=(1+a) (1+€ei) din (3.17)
and
B = Abd/2 Ty (+e ) (3.18)

We can now obtain an expression for the electron
production in terms of P by substituting (3. 8) into

(2.15). This gives
S=(27J, ./d 4 F(FZHTDZ) (3.19)
- id r ] :
where
Ps=nS (ee+ei)/ned (eed+ec) (3. 20)
and B.n’.d © .+0.3
d .. ed (ed C) (3. 21)
T 4 .Ge + Si
Note d_ is essentially the converter spacing divided

by the mean free path for ion recombination at the
collector,

To determine the parameters B, a, and b we
require that S given by (3. 19) fit S* given by (3. 5)
as closely as possible. A simple (but not necessanly
the best) method of doing this is to match S and s*
at the extrapolated end point n = -a and at the point
of maximum electron production n = ny- Matching at




the extrapolated end point requires S (-a) = s*(-a) =0

which gives

1+a

Matching the positions of the maximum electron pro-
duction requires {dS/dn), =(dS*/dn), = 0 which gives

dP
—2 =2 dP - = S
[(P - SR meeed BRI O =0 (3.23)
and -1
(* a)/b = 6, = coth N3 (3.24)

where the subscript 1 denotes quantities evaluated

at n = ny- Note that in differentiating (3. 19) we have
neglected the temperature dependence of d_ in com-
parison with that of P_. Finally, matching the values

of S and S* at the n = My gives

—_2
- P) (3.25)

- = 2
2B (1 + eei)/b ENERE d., Py lPyy

where we have used (3. 18) and (3. 24).

The three equations (3. 22), (3. 23), and (3, 25)
are sufficient to determine the unknown parameters
B, a, and b, An additional equation which can be
used to determine P_, can be obtained by substituting
the boundary conditions (2. 22) and (2. 25) into (3. 6)
and using (2. 12), (2. 27), (3.8), (3.9), and (3. 18).
This gives

Lo == Py (0q+0c)(® 0 Vg
2 .a 2 l+a
=1+B (1+e ) [tanh” () - tanh” (~3)] (3. 26)

To solve this set of equations, it is convenient to

introduce the variable
(n+a)/b=58 (3. 27)

We then obtain from (3. 16) and (3. 22)

=(d+1) 6, coth 5d/E(1- C) (3.28)
and _ _
z P = {d/éd} (B tanh & - D8), (3.29)
whe re
= (1 + a)/b, (3. 30)
c=2 ad/sinhzad (3.31)
and 5
D=1+Bsech &
d
=(d+C)/d(1-0C) (3.32)

Combining (3. 29) with (3. 17) and (3. 25) and using
(3. 28) and (3. 30) - (3. 32) we obtain
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Note €. is essentially the ratio of the ion neutral mean

free pa.th to the ion recombination length at the collec-
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~ by, ~2 °K r'-.- I
4.0T . ~2800 aad T~ (n_ ce/4)d
€~ 3x 1577 5% (827 en 3/ (ors) (3. 36)
so that for typical operating conditions € is very
small. Substituting (3. 33) into (3. 23) gives
Ax = - (d In Pg/dn)
2 — =
f'E € dz (d + 1)2
= | F (3.37)
N @ = 2
E + > €, d (d+1)
where
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N3 (1 +a)(l-1.14 D/B)

To obtain the extrapolated end point a, we first ocbserve

that for n = 0, (3. 28) gives
T =(d/s hs -
P (d/ d] (Btanh 8 - D 60) (3. 39)
where from (3, 27)
a=bs = 50/ (54 + 5.)- (3. 40)

We next anticipate that for most conditions of interest

& cothd -1<<&_ coth 6, -1 sothat
o o d d

P~ (d/ad) (B - D) tanh &§_ (3. 41)

Substituting (3. 41) into (3. 26) and using (3. 30) and
(3. 40) we obtain

Bl +e )tah® 5 +Ctanhs - H=0 (3,42)
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and

2
H_B(1+€ei] tanh Sd—l. (3. 45)

For sz> 4B (1 + eei}G, which corresponds to

B, << (d+ 1)/2 «ECE (1+e, ),

B .» H/G (3. 46)

and

P =We
o]

CE (3. 47)

(eeo + e:E/eed + eC) H,

while for GZ <<4B (1 + Eei}H, corresponding to Sd
>>(d+ 1) /2 »&CE (1+e),

1
& woln (4H/G) (3. 48)

and

P =d+ 1.
o

(3. 49)

Using (3. 28), (3.31) and (3. 32) it can be seen from

(3. 46) and (3. 48) that for d > 1 the approximation

& coth§ -1<<§_coth 6, - 1 used to obtain (3. 42)

.0 foat O d

is valid for all Sd.
This completes the determination of the parame-

ters necessary to specify the electron concentration

and we may now use our results to calculate the

electron potential energy and electron temperature

distributions.

C. Electron Potential Energy

To obtain an equation for the electron potential
energy we use (2, 5) and the equation P; =P 61/9
to eliminate dp,/dx from (2. 6). Then usin;? e
(2.9), (2.10), (12 12), (2.25), (2.27), (3.2), (3.8),
(3.9), {3.11), and (3. 12) and the approximation By
<<|.|.e we find
d in — d

-, o “ 4 |
= (Tie €ei ei) +ee s 1n(1+ee). (3. 50)

We then substitute (3. 27), (3.30) and (3. 45) into
(3. 6)' to obtain
T*i =-H+B(l+e_) tanh?® § (3. 51)

Using (3. 51) and (3. 29), (3. 50) may now be formally
integrated to give

wd=w1+¢(2+u’;3 (3. 52)
wherel 5 6.
i
wl_‘goee[dnm”-‘-ee)]dﬂg BC-BE (3. 53)
5. (0 I-€ . 0,)tanh? 5ds
B =g‘d e el i (3. 54)
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and 2
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v __S‘d e ei i 3. 55)
37 (1 +€ei) (B tanh 6 - D&) '’ .
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where

2
I=B(1+ eei) sech 6d+l. (3. 56)

To evaluate i/ we observe that the integrand is a
rapidly increasing function of & so that the major
contribution to the integral comes from the vicinity
of the end point 65 Thus, it is a good approximation

to set tanh §= tanh6_and ®1-¢ 6. =6 I1-€ .6
. . e ei i ed ei C
and using (3. 28) we obtain
8 I-¢€ . 0 =
/e i Ch 2 d+1
f—_—— h ;
vor Ty c )b Jtanh™ 8 ) In (773) (3. 57)

where we have assumed 60 << éd.

To evaluate 1y, we proceed in a similar manner
and observe ﬂrsgthe important contribution to the
integral in this case comes from the vicinity of the
end point § where it is a good approximation to set

tanh 6 = 54and © H+e Q=0 H+e O, Wethus
obtain e ei 1 eo ei

eeoH + €ei GE tanh ad

Yy = "‘((1 e D e B
a1 (o]

) (3. 58)

D. Electron Temperature

The electron temperature may now be determined
from (2.7) which using (2.9), (2.10), (2.12), (2.25),
(2.27), (3.2), (3.8), (3.10), (3.11), and (3. 12) can
be written

de (=]
e._

1 i (Gei 4
dn 2

1+t (52 +a,)Ge w-&}(a 59)
ee\ P ei e Fe .

In principle this equation can be integrated using
the same techniques employed in the preceding sec-
tion. Since this is somewhat complicated, however,
we shall not attempt it in the present analysis and
instead we shall assume that to a first approxima-
tion:

de fdn=-48 (3. 60)

e e

where A =6 -8

s o & is a constant. Then using
(3. 60) and the boundary condition (2. 26) we find

ln(k+i)_1+ 22 9%
= 2]
T‘ed & S (eed * C} [eeidin+ dei)

(3. 61)

From (3. 12) we see that s contains the factor T
Re so that (3. 61) is an implicit rather than explfcxt
equation for R /T a However, for 2480 <<(6_. +

ed .
OC) (Ee din +d ), it is an excellent approximation

to evaluate € at Red/red = exp (—2~) -3 = 1. 15.

At this point we note that since "15'5 is a function of
© _ we have in effect three unknowns: 8., ﬁee, and
5 , and two equations (3. 32) and (3. 35) which relate
to them. To obtain a third equation which will per-
mit us to solve the set we subtract (2. 26) from (2. 23)
which gives

Q o~ Qed = ZFE (BE - eeo) +(1:30_I(‘3d) {zeeo"'VE}

e

+Teq (288 + Vg = V= ¥). (3. 62)




Integrating (2. 4) and (2. 14) we find

- = — . 3
T\ed I‘eo Tid I-‘io (3. 63)

and
Qeo - Qed=vi [I‘id_rio)' (3. 64)

Substituting (3. 63) and (3. 64) into (3. 62) and using

(2. 28), (3.6), and (3. 9), then gives
(V, +26_ +Vp)e_(1-T, ) = z(rE/red)(eE-ew)
+288_+V -V -, (3. 65)
where from (2. 25), (2.27), and (2. 12)
s 1
. :Fi_dzz@ed\ e €2, 1 (3. 66)
m Ted ea’ @, 0,4/ 500
From (2. 21) and (2. 24) we find
_ (—ed 1
Ve=0 .10 (s +2) (3.67)
ed
and
R T %!
= eo IN\(E _
Vp=6_ ln (1_ - 2)\1_‘ 1), (3.68)
eo eo

where from (2. 12), (2.25), (2.27), (3.6), (3.9), (3.63)
and (3. 66) we have

1
R 5] = R iy
eo = eo\2 ed\ / ed
=~ 5o Veer (e ) (r )\I‘ § e
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1—‘c‘eo =
T =1~ Em (1 —I‘io). (3.70)
ed

Finally, from (2.18), (2.19), (3.24), (3. 28),(3.29),
(3.33), (3.34), (3.37) and (3. 60) we find

= A =6 A® 3. 71
eeo eed+ e el+nl e (3.71)
" A
AB =86, x/xl (3.72)
o ~\-r*/ (3. 73)
el = Xl :
—_2
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x., =N +1n (=) (1 - 1.145)2 (1 +—~_H~*) (3.74)
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For our reference conditions, e* .o .~.06 _~1.50
el ed E

~ ~2 K.
4OC 800°K

N= 7.8 (3. 76)
We now observe that by means of the equations devel-
oped in this section all quantities in (3. 65) can be
found as functions of T /"‘ and & Thus given
I‘E/I‘eq we can solve (;: 65 either graphically or
numerically to obtain 6d which in turn determines all
other variables,

E. Current-Voltage Characteristics

Using (3. 6), (3. 66) and (3.70), the ratio of the
total current to the emitter electron current is found
to be

DT, =(-€ ){1-€_ (-1} (3.77)

The arc drop may be determined from (2. 28) and
(3. 65) and is given by

V. o=V_-V_ -y

D 'E G 0d
) (I‘E/’I‘eo) (O_, - Op) - 240_ (3.78)
+(V,+20__+Vo)e (1-T, ).

IV. Graphical Solution and Illustration Results

To obtain a graphical solution for the equations of
the previous section, we substitute (3. 67) - (3. 73)

into (3. 65) and solve for Ax. This gives

ax =x, [@ - (x/xg)PI1 +R -n, Q) (3.79)
WhE;IZ 1 I‘E eo -1( D_l
Q=r— gl - =) (1-5)

2
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P=(/T, ) - xg €, (1-T,)

” 3 (3. 81)
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ei
- L(B-D)(I +eei); B coth 84 )

(3. 82)




and

(3. 83)

*
Xem =V /GE.

E
In deriving (3.79) - (3. 82) we have used (3. 26), (3. 28)
and (3. 41) to eliminate T'jy in certain terms., We
have aivo assumed A8 <8O <<V, and dropped
several terms which are small as a consequence.

Equation (3. 79) may now be solved simultaneous
with (3. 37) by plotting them both as a function of 6d.
This is illustrated in Figure 2 for the case JE/J =
2. The curves identified by the parameters Ne _d
{E + 1)} were obtained from (3. 37) while those identi-
fied b}r_[:é + 1) were obtained from (3. 79). For given
€y and d, the value of 5, is determined by the inter-
section of the corresponding pair of curves. The
root of interest is the largest one. The physical
significance, if any, of the smaller roots is not
clear at the present time., Once §, is determined,
all other variables may be obtaineg from the equa-
tions of the preceding section.

Figure (3a) shows curves for the Saha electron
concentration ng, the actual electron concentration
n,, the ion current J; as a function of position in
the converter for typical operating conditions. All
these quantities exhibit the characteri_?tic shapes
found in previous numerical solutions 5) of the
problem. The two expressions S and S for the net
electron production are compared in Figure (3b)
and it can be seen that the fit is very satisfactory.

Figure (4) shows the electron and ion tempera-
tures as a function of position in the converter for
the same conditions as Figure (3). Note that the
electron temperature is a linear function of x /d
because the gradient was assumed constant in the
analysis. The ion temperature, however, was
obtained by integration of the neutral heat flux equa-
tion and is not linear due to variations in the thermal
conductivity with temperature. The electric field
is essentially the product of the ion current density
and the electrical resistivity. It rises rapidly in the
vicinity of the collector because the low electron
density in this region results in a high effective
resistivity. A similar effect of opposite sign occurs
at the emitter.

The emitter and collector electron temperatures
are shown in Figure (4a) as a function of the pd
product for J_/J = 2. It can be seen that the emitter
electron temperature has a minimum in the neighbor-
hood of pd = 20 and rises for both smaller and
larger pd. The physical reason for this is that for
small pd electron loss by ambipolar diffusion to the
walls is large and consequently the temperature must
rise to maintain the ionization required to carry
the prescribed current. On the other hand, for
large pd a higher electron temperature is required
at the emitter to provide the electron concentration
gradient necessary to drive the current through a
larger effective resistance. For the same reasons
the collector temperatures exhibit a maximum,

The calculated arc drop V is compared with
experimental results in Figure (4b) for the same
conditions as those in Figure (4a). A value of 0.5 ev

was assumed for the contact potential in the experi-
ments. Both the calculated and experimental curves
clearly show the existence of an optimum pd at which
the arc drop in the converter plasma is a minimum.
The calculated value of this minimum based on the
cross-sections given in Table 1 is 0. 27 ev which
agrees well with recent experimental estimates.

The slopes of the calculated and experimental
curves at large pd are also in good agreement,

This confirms the value of the ion-neutral cross-
section which is the most important parameter for
determining the slope. This is a result of the

fact that the diffusion is ambipolar. Thus, the elec-
tron and ions must move together and since the ion-
neutral mean free path is smaller than either the
electron-neutral or electron-ion mean free paths
most of the resistance is due to the ions., As a
consequence, accurate values of the ion-neutral
mean free path are of considerable importance in
determining converter performance.

Caleculations of the current-voltage characteristics
can be made in the same manner, Howewver, due to
a tendency for positive and negative terms to
cancel for large and small values of l_"E/l'eo they
are somewhat more difficult to carry out graphically
and are currently being programmed for a numerical
computer. In this connection we may note that
all the results presented in this paper were obtained
by hand computation using a slide rule.

V. Concluding Remarks

On the basis of the analysis presented in this
paper we conclude that the approximate analytic
technique described can be a very useful tool for
the investigation of thermionic energy converters
operating in the ignited mode. The method is very
much simpler and more efficient than numerical
integration and more general and accurate than
previous analytic treatments. It gives considerable
qualitative insight into the importance and effect
of the various physical parameters which determine
converter performance and provides the first
detailed explanation of an optimum pd product at
which the arc drop in the plasma is 2 minimum. The
quantitative comparisons which have been made show
reasonable agreement with experiments and with
further refinement the method should give results
at least as reliable as the input data.

The most questionable approximation made in
the present treatment is the assumption of a con-
stant electron temperature gradient. Although this
is reasonable for small gradients, it's effect is
difficult to estimate for large gradients. The
approximation can be removed by integrating the
energy equation and while this would complicate the
analysis somewhat, it should increase the reliability
of the results considerably. This is an important
improvement which should be made before serious
quantitative applications of the method are made.

In addition, the present analysis is limited to
the case of monotonic emitter and collector sheaths
of the type illustrated in Figure 1, and the possie
bility of work function changes due to the Schottky




effect at large negative voltages has not been con-
sidered. Finally, we have neglected radiation losses
and diffusion of excited species in the cascade ioniza-
tion process. Although the effect of these latter
approximations is thought to be small in the range of
interest for practical converters, they also need
further study.
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