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The coupled vibration-dissociation-recombination process for molecules and atoms has been examined. 
Techniques for solving the appropriate master equations for both quantum (discrete) and classical (con­
tinuous) models are given. It is shown that the process is most easily treated classically and that in this 
case the master equation can be reduced to an equivalent diffusion equation. It is assumed that, after an 
initial vibration transient, during which reactions are negligible, the process may be treated using the 
steady-state approximation. During the steady-state phase, the usual phenomenological rate equations 
are valid and the ratio of the forward and reverse rate constants is the equilibrium constant, though the 
individual rate constants are depressed below their equilibrium values. 

Comparison of the results with other theoretical work shows general agreement for similar models; 
comparison with shock-tube experiments on molecular dissociation and stellarator experiments on ionic 
recombination is encouraging. 

I. INTRODUCTION 

THE time-dependent relaxation of a dilute mixture 
of molecules dissociating (or recombining) in a 

background of inert atoms is a fundamental process 
in chemical kinetics and has been the subject of nu­
merous experimental and theoretical investigations. 
Excellent surveys of past work on this problem may 
be found in review articles by Osipov and Stupochenko,1 

Widom,2 and Rice.3 The basic master equations gov­
erning the relaxation process have been formulated, 
and the general properties of their solutions have been 
studied.1,2 However, detailed solutions of these equa­
tions for models which provide a physically reasonable 
description of an atom interacting with a molecule 
have not yet been obtained. Although most of the 
current theories4-18 predict the order of magnitude of 
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the observed steady-state rate constants and the 
incubation time observed in dissociation experiments19 

has been qualitatively explained,20 a satisfactory under­
standing of the dependence of the rate constants on 
temperature and atomic species is still lacking. In 
addition, the question of whether the ratio of the 
observed dissociation and recombination rate constants 
is equal to the equilibrium constant is still being 
debated.14,21-28 

The difficulties are due in part to the different 
assumptions made in treating the mechanics of the 
process and in part to the lack of knowledge of the 
interaction potential involved. In this connection, it 
should be observed that an acceptable solution of the 
mechanical problem must be obtained before serious 
consideration can be given to the effects of the potential. 
Given such a solution, it should then be possible to use 
the experimental data to obtain information about the 
interaction potential and this, we believe, is an im­
portant goal of current research on the theory of 
elementary chemical reactions. 

In the present paper, we have attempted to take a 
step toward this goal by investigating the solutions of 
the appropriate master equations for physically reason­
able atomic models. In so doing, we have reviewed the 
solutions for some of the simpler models treated 
previously and tried to indicate their deficiencies. The 
molecular models considered include both Morse and 
Coulomb oscillators. Solutions of the appropriate 
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27 B. Widom, J. Chern. Phys. 34,2050 (1961). 
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master equations have been investigated for both 
classical (continuous) and quantum- (discrete) me­
chanical cases. It is assumed that for either dissociation 
or recombination the relaxation process starts with an 
initial fast transient having a duration of the order of 
the vibrational relaxation time during which there is 
negligible chemical reaction but the population of the 
vibrational levels approaches a distribution which is 
extremely close to a solution of the steady-state master 
equations. This transient is followed by a very much 
slower phase during which the steady-state distribution 
is maintained and the chemical reaction proceeds to 
equilibrium. For dissociation, the steady-state distri­
bution is very nearly Boltzmann except near the disso­
ciation limit where the levels are underpopulated; for 
recombination, the steady-state distribution is Boltz­
mann near the dissociation limit but the lower levels 
are underpopulated. During the steady-state phase of 
the relaxation process, the evolution of the system is 
described by the usual phenomenological equation, 

dM(t) /dt=krA2(t) -kdM(t) , (1.1) 

where M(t) is the molecule concentration, A(t) is the 
atom concentration, and the ratio of the steady-state 
dissociation and recombination rate constants, kd/kr , 

is equal to the equilibrium constant, A.2IM •. This 
result is in complete accord with the conclusions of 
Stupochenko and Osipov,17 Snider,20 Nikitin,24 and 
Rice22 and justifies the experimental practice of using 
the equilibrium constant to relate the dissociation and 
recombination rate constants. 

It is also shown that because of the high level density 
near the dissociation limit the classical master equation 
is appropriate for treating dissociation and recombina­
tion and that in the limit of small energy transfers 
this integrodifferential equation may be reduced to an 
equivalent diffusion equation. The diffusion equation 
is simpler than the original master equation and pro­
vides considerable physical insight into the relaxation 
process by making possible a direct comparison with 
familiar heat-flow problems. The available information 
on the average energy transfer in collisions29 .3o indicates 
that it should be a reasonable approximation in practice. 
This approach is similar to one originally proposed by 
Kramers31- 33 in which the relaxation of a chemical 
system was described in terms of a viscous diffusion 
process governed by a Fokker-Planck equation. 

A comparison of the theoretical rate constants with 
the shock- tube data on the dissociation of hydrogen,34-37 

29 B. Woznick, J. Chern. Phys. 42, 1151 (1965) (also private 
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30 J. C. Keck, Discussions Faraday Soc. 33,173 (1962). 
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nitrogen,38.39 oxygen,40-45 fluorine,46 chlorine,47.46 bro­
mine,49-53 and iodine54 by inert gases shows reasonable 
agreement considering the uncertainties in experi­
mental data and the three-body potentials, and 
relatively small changes in the assumed ranges of the 
interactions will produce almost complete agreement. 
It is premature to take such changes too seriously, 
however. 

The theory may also be applied to the ionization 
and recombination of atoms and a calculation of the 
population distribution for a recombining He+ plasma 
has been made, which is in good agreement with the 
experimental results of Hinnov and Hirschberg.55 

In the following section, we set down the master 
equations on which our models of the relaxation 
process are based and consider the general conse­
quences of the steady-state assumption as applied to 
these equations. In Sec. III we show two methods by 
which the classical master equation may be reduced to 
an equivalent diffusion equation. In Sec. IV, we derive 
the steady-state solutions of the master equations for 
both quantum and classical molecular models and 
compare the results with the experimental data. In 
Sec. V, we briefly summarize our conclusions. 

II. MASTER EQUATIONS AND SOME 
GENERAL IMPLICATIONS 

We confine our attention to gas mixtures which 
consist primarily of inert gas atoms diluted slightly 
by diatomic molecules. We consider situations in which, 
at time zero, the background gas is given a new transla­
tional temperature. We ignore the very small time 
interval during which the translational and rotational 
equilibria are established, but study in detail the 
manner in which the vibrational relaxation, dissocia­
tion, and recombination processes contribute to the 
evolution of the state of the molecular gas. 

The dilute character of the gas mentioned above 
implies that molecule-molecule collisions will be of no 
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importance compared to the molecule-atom collisions 
in either the vibrational relaxation processes or the 
dissociation process. Furthermore, in the recombination 
process, only collisions among a background atom and 
the two recombining particles will contribute effectively 
to the phenomenon. 

The mathematical models which can be used to 
describe this evolution depend on a detailed characteri­
zation of the molecules making up the gas under study. 
However, each such model involves a probabilistically 
inferred rate at which molecules leave any given state 
and enter any other state. The quantum-mechanical 
version of any such model, then, is of the form 

aN(n t) P-l 
--'-= Z:1B(n, m)N(m, t)-B(m, n)N(n, t)] 

at m=O 

+B(n,e)A2(t)-B(e,n)N(n,t), (2.1) 

where 1Y(n, t) is the concentration of molecules in the 
nth vibrational level, P is the number of levels in the 
molecule, and A (t) is the concentration of atoms 
resulting from dissociation. This equation merely states 
that molecules may leave the level n by making 
transitions to the level m at a rate B(m, n) N(n, t), 
or dissociating to the continuum at a rate B(e, n) 
N(n, t) and may enter the level n by making transi­
tions from the level m at a rate B(n, m) N(m, t), or 
recombining from the continuum at a rate B(n, e) A2. 
The form of the equation is a consequence of our 
assumptions that (1) the majority of the transitions 
are induced by collisions with a background atom, 
(2) the state of the molecules can be described by the 
vibrational quantum number, and (3) recombination 
requires a three-body collision. 

Although our model contains no explicit reference 
to the rotational quantum number and it may there­
fore appear that rotational effects are to be omitted, 
this is not the case. Within the framework of this model 
rotational effects may be approximately taken into 
account by using an appropriate effective potential to 
describe the molecule and by measuring the vibrational 
energy from the top of the rotational barrier. In Sec. IV 
this technique is used in treating the classical Morse 
oscillator. 

At thermodynamic equilibrium, aN(n, t) fat is zero, 
and the requirement of detailed balancing leads to the 
conditions 

R(m, n) =B(m, n)N.(n) =B(n, m)N.(m) =R(n, m), 

(2.2a) 

R(e, n) =B(e, n)N.(n) =B(n, e)A/=R(n, e), (2.2b) 

where N.(n) =N.(O)e-'" is the equilibrium concentra­
tion of molecules in the level n, en = En/k T is the 
energy of the level in units of kT, A. is the equilibrium 
atom concentration, R(n, m) is the "one-way" equilib-

rium transition rate between the levels nand m and 
R(e, n) is the "one-way" equilibrium dissociation rate. 
In writing (2.2), we have used our assumption that the 
translational and rotational degrees of freedom of the 
molecule are in equilibrium with the translational 
degree of freedom of the background atoms so that the 
transition probabilities are the same under the non­
equilibrium conditions of interest as they are at full 
equilibrium. 

Using (2.2), and introducing the specific population 

X(n, t) =N(n, t)/N.(n) , (2.3) 

which is the ratio of the actual concentration of mole­
cules in the level n to the equilibrium concentration, 
(2.1) can be written in the more symmetrical form 

( )
aX(n, t) 

N. n--­
at 

P-l 

LR(n, m)[X(m, t) -X(n, t)] 
m=O 

+R(e, 11) ([A(t)/ A.]2-X(n, t)}. (2.4) 

As is seen later, the use of X(n, t) is convenient not 
only because it reduces (2.1) to a simpler equation, 
but also because it varies less with n than N(n, t) and 
enables one to see more clearly the manner in which 
the nonequilibrium solutions of (2.1) depart from a 
Boltzmann distribution. 

The classical analog of (2.4) has the form 

N.(e) aX(e, t) 
at 

t R(e, e') [X(e', t) -X(e, t) ]de' 
o 

+R(e, e) {[A (t)/A.]2-X(e, t) l, (2.S) 

where N.(e) =N.(O)p(e)e-· is the equilibrium concen­
tration of molecules per unit energy range at e, pee) is 
the ratio of the level density at e to that at 0, 

X(e, t) =N(e, t)/N.(e) (2.6) 

is the ratio of the concentration of molecules, N(e, t), 
to the equilibrium concentration, R (e, e') de'de is the 
"one-way" equilibrium rate of transitions from an 
energy band de at e to an energy band de' at e', R(e, e)de 
is the "one-way" equilibrium dissociation rate from an 
energy band de at e, and 13=D/kT is the dissociation 
energy in units of k T. 

General Steady-State Implications 

Before proceeding with the detailed solution and 
application of the master equations (2.4) and (2.S) 
we should like to summarize a few important results 
which may be obtained using the conventional steady­
state approximation. In so doing, we consider a gas 
mixture of the type previously discussed, whose tem­
perature is suddenly changed so that the molecules 
are thrown out of equilibrium. As may be inferred 
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from the work of Montroll and Schuler,Is the sequence 
of events for all situations except those involving very 
high temperatures begins with a rapid relaxation to a 
population distribution which is almost a Boltzmann 
distribution. This initial phase, during which dissocia­
tion and recombination are negligible, is followed by a 
much slower phase during which most of the dissocia­
tion or recombination occurs and the "almost Boltz­
mann" distribution is maintained. During this phase 
of the process we anticipate that our "almost Boltz­
mann" distribution will be closely approximated by a 
solution of the equation 

P-l 

LR(n, m)[X(m, t)-X(n, t)] 
m=1 

+R(c, n) {[A (t)/ A.]LX(n, t)} =0, (2.7) 

and we seek solutions of (2.7) of the form 

[A (t) / A.]2-X(n, t) =f(t)x(n). (2.8) 

Substituting (2.8) into (2.7) shows that x(n) satisfies 
the equation 

P-l 

LR(n, m) [x(m) -x(n)]- R(c, nh(n) =0, (2.9) 
m..() 

which determines the steady-state distribution when 
recombination is negligible. 

Imposing the normalization x(O) = 1 in (2.8) we 
obtain 

X(n, t) =X(O, t)x(n) +[A (t) / A.]2[1-x(n)], (2.10) 

and the time-dependent functions may now be deter­
mined by summing (2.4) over n and substituting 
(2.10) into the result. This gives 

dM(t) {[A(t)]! }P-l 
---at= ~ -X(O, t) ?;R(c, n)x(n) , (2.11) 

where 
P-I 

M(t) = LN.(n)X(n, t) (2.12) 
n=O 

is the concentration of molecules, 

P-l 

M(t) = LN.(n) {X(O, then) 
n=O 

+[A (t) / A.]2[1-x(n)]}. (2.13) 

It now follows from our assumption of an "almost 
Boltzmann" distribution, that x(n)~l everywhere 
except near the dissociation limit. Thus whenever 
X(O, t) is appreciable compared to [A (t) / A.]2 

P-l 

M(t)~X(O, t) LN.(n) =X(O, t)M., (2.14) 
n=O 

so that (2.11) can be written in the form 

(2.1S) 

where 
P-l 

kr = LR(c, n)x(n) / A.2 (2.16) 
n-I 

and 
P-l 

kd= LR(c, n)x(n)/M., (2.17) 
_I 

are, by definition, the steady-state recombination and 
dissociation rate constants. 

Equation (2.1S) is identical to the standard rate 
equation used for describing the dissociation recombi­
nation process. It can be solved in conjunction with the 
conservation equation 

2M(t)+A(t) =Ao (2.18) 

to give a complete history of the dissociation-recom­
bination process for the steady-state phase following 
the vibrational transient. Note that the use of (2.1S) 
is not restricted by our assumption that X(O, t)"-' 
[A (t) / A.J2 since for X(O, t) «[A (t) / A.]2 the dissocia­
tion terms in both (2.11) and (2.1S) may be neglected. 

The equilibrium rate constants corresponding to 
(2.16) and (2.17) are 

and 

P-l 

kr.= LR(c, n)/A.2 
n=O 

P-l 

kd.= LR(c, n)/M., 
n=O 

and it follows that 

(2.19) 

(2.20) 

(2.21) 

where ANM. is the equilibrium constant for the 
reaction. 

These results are in accord with arguments advanced 
by Stupochenko and Osipov,I7 Rice,24 and Snider,22 but 
disagree with the early conclusions of Nikitin and 
Sokolov.14 The reason is that, as Rice has pointed out, 
Nikitin and Sokolov failed to take account of the 
redissociation of the molecules near the dissociation 
limit. Thus, while it is true that atoms recombine at a 
rate which is the same in the nonequilibrium and 
equilibrium situations as long as the translational 
distribution of the atoms is at equilibrium, it is not 
true that this represents the net rate of appearance of 
molecules which is the quantity measured experiment­
ally during the steady-state phase. 

The same procedure may be followed to obtain a 
steady-state solution for the classical model of (2.S). 
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In this case the specific distribution is 

X(e, t) =X(O, t)x(e)+[A(t)/A.]2[1-x(e)], (2.22) 

where x( e) satisfies the equation 

t R( e, e') [xCe') -xC e) ]de'- R(c, e)x(e) =0, (2.23) 
o 

and the steady-state rate constants analogous to (2.16) 
and (2.17) are 

k =/3 R(c, e)x(e)de 
r 0 A/ ' 

(2.24) 

and 

which satisfies the boundary condition at e=O and 0 
implicit in (2.S). Expanding X(e', t) about e, we obtain 
the partial differential equation 

ax ax 1 a2x 
N.-=.1.1-+.,.1.2-+O(.1.3) , at ae· ae2 

(3.2) 

where 

(3.3) 

is the kth moment of the energy transfer (e'-e) with 
respect to R(e', e). We now observe that the symmetry 
of R(i, e) on interchange of e and e' requires that 

R(e', e) = SeE, 1.1. I), 
kd=/3 R(c, e)x(e)de. 

o M. 
(2.25) where 

( 3.4) 

( 3.5) 

In concluding this discussion it should be pointed 
out that Eq. (2.1S) is a consequence of the form of 
(2.8) assumed for the steady-state distribution function 
and the uniqueness of the solution has not been proved. 
Further examination of this point is required. 

III. EQUIVALENT DIFFUSION EQUATIONS 

An alternative method of describing the vibrational 
relaxation process in the classical limit involves the 
transformation of the master equation (2.S) to an 
equivalent diffusion equation. The procedure is analo­
gous to that by which the master equation may be 
reduced to the Fokker-Planck equation.6•56 It leads to 
the identification of a chemical reaction with a diffusion 
process in phase space as proposed by Kramers31- 33 

and connects the diffusion coefficient with the moments 
of the transition kernel in the master equation. 

The transformation is made by two methods. The 
first assumes that the integrand in (2.S) can be ex­
panded in a Taylor series about e'=e; the second 
assumes that the kernel R(e', e) in (2.S) is separable. 
The use of these two methods not only makes it possible 
to deal with a wider range of problems but also permits 
one to compare results in cases where both methods are 
applicable. 

Taylor Expansion of Integrand 

Let us assume that the kernel R( e/, e) in (2.S) is 
large only for 1 e' - E 1 < 1 and similarly that the dis­
sociation rate R(c, e) is appreciable only for e near the 
dissociation limit o. Under these conditions, we can 
anticipate that the solution of (2.S) will be well 
approximated by that solution of the equation 

( )
aX(e,t) 

N. E ----'-
at 

L:R(E', E) [X(E', t) -X(E, t) ]de', (3.1) 

66 N. G. van Kampen, Can. J. Phys. 39,551 (1961). 

E= (e'+e)/2 

is the mean of the initial and final energies and 

(3.6) 

is the energy transfer. If we assume that SeE, 1.1.1) is 
sharply peaked at .1=0, but varies relatively slowly 
with E, we may substitute (3.4) into (3.3) and expand 
about E=e. This gives 

.1.k (e) =lCO

[S(e, 1.1.1)+ a~1 ~+.'.J.1.kd.1.. 
-co ae • 2 

( 3.7) 

and 

.1.2(e) =2 to See, .1).12d.1+0(.1.4). (3.8) 
o 

Comparing (3.8) and (3.7) shows that 

.1.1 = t(a.1.2/ae) +0(.14
) , (3.9) 

and substituting (3.9) into (3.2), we find to terms of 
0(.1.4) 

(3.10) 

This is recognized at once as the ordinary one-dimen­
sional diffusion equation which describes, for example, 
the flow of heat in a medium of variable heat capacity 
and conductivity. It displays clearly the diffusion char­
acter of the vibrational relaxation under conditions 
where the average energy transfer in a collision is small. 

The boundary conditions necessary to determine 
X (e, t) uniquely may be obtained as follows. Integrating 
(3.10) with respect to E, we find that the flux of mole­
cules crossing the energy surface e is (.12/2)aX/ae. 
Since no molecules can cross the surface e=O, we 
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obtain 
ax/ae 10=0 (3.11) 

as one boundary condition. The other may be obtained 
by matching the flux of molecules crossing the surface 
e=o to the dissociation rate obtained by integrating 
the original master equation (2.5). This gives 

~2 ~~ I a = fRee, e{ (~J-X(e, t) JdE. (3.12) 

Expanding X (E, t) about e= 0, we obtain 

~2 ax I [(A )2 ] ax I ?- =<R(o) -A -X(o, t) +r1- +o(r2), 
- aE 6 e aE 6 

where 

<R(o) = [R(e, E)de 
o 

is the equilibrium dissociation rate and 

( 3.13) 

(3.14) 

rk= [R(e, E) (o-e)kde (3.15) 
o 

is the kth moment of (o-e) with respect to R(e, e). 
We now observe that 

R(e, e) = {O R(t', e) de', 

so that (3.15) can be written 

I'k = ~6{O R( e', e) (o-e)kde'de. 

( 3.16) 

( 3.17) 

Substituting (3.4) into (3.17) and expanding about 
e= 0 gives 

rk=jCOIA/2[S(O, ~)+ a~ I x+·· .J(!~-X)kdXd~, 
o -A/2 ae a 

and it follows that 

r1=!fCO S(Il, ~)~2d~+O(~3). 
2 0 

Comparing (3.18) and (3.8) shows 

rl=M2(1l)+O(~3), 

(3.18) 

(3.19) 

and substituting (3.19) into (3.13), we find that to 
terms of O(~3) our second boundary condition is 

t~2(O) (ax/ae) la=<R(Il)[(A/A.)2_X(Il, t)J. (3.20) 

This completes the transformation of the master 
equation (2.5) into an equivalent diffusion equation 
(3.10) with appropriate boundary conditions (3.11) 
and (3.20). 

The same techniques may also be used to prove an 
important approximate relation between the "one-way" 

equilibrium flux of molecules across the energy surface e, 

<R(e) = fco fR(e", l)de"de', (3.21) 

and the first moment of the absolute value of the 
energy transfer, 

1 ~l 1 (e) = L:R(E', E) 1 E'-e 1 de'. (3.22) 

To do so, we substitute (3.4) into (3.21) and (3.22) 
and expand about e. This gives 

J
COI A/2

[ as I J <R(e) = S(e,~)+--=- x+··· dxd~ 
-A/2 ae • 

=fCO See, ~)~d~+O(~3) 
o 

( 3.23) 

and 

I ~ll (E) =lCO
[S(E, 1 ~ 1)+a~1 ~+ ... ] 1 ~ 1 d~ 

-00 aE • 2 

=2fCO see, ~)~d~+O(~3). 
o 

( 3.24) 

Comparing (3.23) and (3.24), we find to terms of O( ~3) 

(3.25) 

Since the moments of R(E', E) are in general easier to 
compute (and probably to measure) than the kernel 
R(E', e) itself, the relation (3.25) is extremely useful. 

In concluding this section, we should note that 
while replacing the integral equation (2.5) with an 
equivalent diffusion equation (3.10) is physically 
appealing. The principal justification for the procedure 
is the empirical observation that in situations where 
X (e, t) is nicely monotonic, the replacement of the 
integral equation by a diffusion equation does give 
good results. Attempts to use more terms in the power 
series for X(E, t) and R(t', E) are likely to decrease the 
effectiveness of the technique. Ordinarily, the higher­
order counterpart of (3.10) will be very clumsy and 
give less accurate results. In fact, the full series diverges 
outside the interval \ t'-e I <Il-E and, for E close to Il, 
this is most of the range of interest. Therefore, until 
further clarification of the method is forthcoming, 
termination of the process at the quadratic stage is 
advisable. 

Separable Kernel 

The second method of transforming (2.5) into a 
differential equation involves the assumption that 
kernel R(t', e) can be separated in the form 

{

T2(e') Tl(e) : e'>e 
R(e', e) = , 

r2(E)rl(e'): e>e' 
(3.26 ) 
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and that the dissociation rate R(e, e) can be expressed with the boundary conditions 

R(e, e) =rl(e)rc, ( 3.27) 

where rc is a constant. Substituting (3.26) and (3.27) 
into (2.8), we obtain 

(N.aa~ +ZX )=r2(e) frl(€') X(€') dE' 

+rl (E) [/r2( c') X (e')de' +rc(~J]' (3.28) 

where 

Z(E) =r2(e) frl(e')df'+rl(E)[/r2(e')de'+rc(~J] 
(3.29) 

is the equilibrium collision rate. Differentiating (3.28) 
twice with respect to f gives the two additional equations 

a (ax ) dr2fE ') (') , - Ne-+ZX =- rl(e X E dE 
aE at dE 0 

and 

a
2 
(ax ) d

2
r2fE (' ')' - Ne-+ZX =- rl E )X(E dE 

aE2 at de2 0 

where 

(3.30) 

(3.32) 

is the Wronskian of r2 and ri. Combining (3.28), (3.30), 
and (3.31), we find E.~ 

d
2
r2 { ax } --W rl N -+ZX - W21r2 rI}X 

dE2 ,e at " (3.33) 

with the boundary conditions 

WlrI, N.(aX/at)+zX} 10=0 (3.34) 
and 

Wh, Ne(ax/at)+zxll.=rc(A/ A.)2Wh, rilla. 
(3.35) 

Since X = 1 and ax/at=o at equilibrium, Z satisfies 
the equation 

Wh, rdd2Z -(~W{r2' rd)dd
Z 

dE2 dE e 

and 
Wlrl, Z} 10=0 

Wlr2, Z} la=rcW{r2, rd la. 

(3.37) 

(3.38) 

We therefore obtain, on evaluating the Wronskians in 
(3.33), (3.34), and (3.35), the equation 

+(1--.!.. dZ)Neax =~(Z2 ax), 
W dE at aE W aE (3.39) 

with the boundary conditions 

WlrI, Ne(aX/at) J+rIZ(aX/aE) 10=0, (3.40) 
and 

W {r2' Nea~}+r2Z~~ I a =rcw[ (~J-X] 1/ (3.41) 

where we have used W to abbreviate W h, r1/. The 
differential equation (3.39) with its boundary condi­
tions (3.40) and (3.41) is completely equivalent to the 
original integral equation (2.5) in the case where the 
kernel is separable in form (3.26). Although it is rather 
complicated in the general case, it can be simplified 
considerably in the important special case where the 
characteristic energy transferred in a collision is small 
compared to kT. Under this condition, Z is small 
compared to Wand N. ax/at is small compared to Z. 
As a result, (3.39) becomes approximately 

Neax =~(Z2 ax) 
at aE W aE ' (3.42) 

and the boundary conditions (3.40) and (3.41) become 

aX/aE 10=0 (3.43) 
and 

aa~16 = ~2:[ (~J-x ] 10' (3.44) 

Thus, once again, we find that in the limit of small 
energy transfers, the vibration-dissociation-recombina­
tion process can be described by an ordinary diffusion 
equation. 

IV. STEADY-STATE SOLUTIONS 

As we anticipate in Sec. 2, the population of 
vibrational levels after the initial transient has passed 
can be obtained from a solution of the steady-state 
dissociation equation (2.9) for the quantum-mechanical 
model, or (2.23) for the classical model. In this section, 
we provide exact solutions of (2.9) and, by the method 
of Sec. 3, approximate solutions of (2.23). 

Quantum-Mechanical Model 

In treating the dissociation problem using the 
quantum-mechanical model, we limit ourselves to the 
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case in which only transitions between adjacent levels 
are important. The cases where larger steps must be 
considered are more easily treated using the classical 
model to be discussed later. In this "ladder-climbing" 
approximation, (2.9) becomes 

R(n+l, n)[x(n+l)-x(n)J 

- (1- 0,,0) R(n, n-l) [x(n) -x(n-1) J=O, (4.1) 

where we have set R(c, P-1)=R(P, P-1), and onO 

is the Kronecker delta. The boundary conditions are 

Quantized Morse Oscillator 

We now consider the application of the above results 
to the case of a nonrotating quantized Morse oscillator. 
The potential energy of such an oscillator is given by 

(4.10) 

and the vibrational transition rate may be approxi­
mated by! 

(4.11) 

X(O) =1 and x(P) =0. where 
It is now convenient to define Q(n+l) =x(n+l)-

xCn) so that (4.1) becomes 

R(n+1, n)Q(n+l)-R(n, n-l)Q(n) =0. (4.2) 

Solving (4.2) by iteration, we obtain 

Q(n+l) 

and 

R(n, n-l)Q(n) 

R(n+l, n) 
R(I,O)Q(I) (4.3) 
R(n+l,n) , 

Zo = uc( 1-e-e) A aM. ( 4.12) 

is the collision rate, 

(4.13) 

is the resonance transition probability for a Morse 
oscilla tor, 57 

hex) =x2 rOe-Y csch2(xy-!)dy 
o 

( 4.14) 

rt+1R(1 O)Q(I) 
x(n+ 1) =X(n) +Q(n+ 1) = ..• = 1 + {; R(~, k-1)' is the adiabaticity factor, 

(4.4) wn';::::jkT( En-En-I) /h=wo(l-n/ P) (4.15) 

Imposing the boundary condition x(P) =0, we find 

P 

R(1, O)Q(l) = - [LR-!(k, k-l) J-1, (4.5) 
k=! 

and (4.4) can be written 

n P 

x(n) =1- LR-J(l<, k-1)/LR-!(k, k-l). (4.6) 
k=! 

Since, for slowly varying transition probabilities 
B(k, k-l), 

R(k,k-l)=B(k,k-l) exp(-Ek_l) (4.7) 
is a rapidly decreasing function of k, it can be seen 
that x(n) will differ appreciably from unity only in 
the interval for which (EP-En ) ;51. Thus, as we antici­
pated in Sec. II, the distribution of molecules over the 
vibrational levels is "almost Boltzmann" except near 
the dissociation limit where it is depressed. 

The steady-state dissociation rate constant obtained 
by substituting (4.6) into (2.17) is 

P 

kl=[M.LR-I(k,k-l)J-l, (4.8) 
k=[ 

and the corresponding equilibrium rate constant ob­
tained from (2.20) is 

kde= R(P, P-l) /M •. ( 4.9) 

These results are substantially identical to those 
obtained by Stupochenko and Osipov. [7 

is the angular frequency of the transition, 

En';::::j8(n+!) [1- (n+!)/2PJ ( 4.16) 

is the energy of the upper level, 8='fUJJo/kT is the 
ground-state level spacing divided by kT, u is the 
kinetic cross section, c = (8k T /rrf.la)! is the mean speed 
for collisions of molecules and background atoms, M. is 
the equilibrium concentration of molecules, Aa is the 
concentration of background atoms, f.la is the reduced 
mass for the collision, f.l12 is the reduced mass of the 
molecules, r = (7r L) (f.la/2k T)' is the effective collision 
time for an exponential interaction potential Va= 
Vo exp( -r/ L), P';::::j2D/'fUJJo is the number of levels in 
the potential well, wo=(3(2D/f.l12)! and other quantities 
have been previously defined. Note that (4.10) exhibits 
explicitly the important dependence of R(n, n-l) on 
the adiabaticity factor, h( wnr), which may change by 
many orders of magnitude as n approaches P due to 
the decrease in the level spacing near the dissociation 
limit. 

The adiabaticity factor (4.13) may be evaluated58 

by the method of steepest descent and is found to be 

( 4.17) 

where x»1. By numerical integration and curve fitting, 

67 R. Herman and K. E. Shuler, J. Chern. Phys. 21, 373 (1953). 
68 (a) R. N. Schwartz and K. R. Herzfeld, J. Chern. Phys. 22, 

767 (1954); (b) R. N. Schwartz, Z. 1. Slawsky, and K, F. Her~­
feld, ibid. 20, 1591 (1952), 

Downloaded 07 Dec 2011 to 129.10.124.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



2292 ]. KECK AND G. CARRIER 

we have found a more convenient expression, 

f2(X)~(!)[3- exp( -2x/3)] exp( -2x/3) , (4.18) 

which is equally accurate (±20%) for O~x~20, and 
bridges the gap between the cases of impulsive and 
adiabatic energy exchange. We, therefore, use (4.18) 
instead of (4.17) in our calculations. 

Using (4.18), we can now estimate the partial sum, 

n 

Sn= LR-l(k, k-1), ( 4.19) 
k-l 

appearing in our expression (4.6) for the population 
distribution. To do this, we first replace the summation 
by an integral so that 

21n 

{ [ (k+
1
)]} / Sn~Zo 0 exp j wor(1-k/P)+(I(k+!) 1--z/- dk ak[3- expljwor(l-k/P) IJ, ( 4.20) 

and observe that the numerator of the integrand has a 
strong maximum at 

k~l1* = p- P( "I/o) I, 
where 

(1.21) 

(4.22) 

is a parameter which determines the "softness" of the 
collisions. In particular, the adiabaticity parameter, 
wr, is related to "I by the equation 

( 4.23) 

which shows that as "I increases, the collisions become 
softer (more nearly adiabatic). For a hard-sphere 
interaction, the value of "I is zero. 

Evaluating the denominator in (4.20) at k =n* and 
the remaining integral by completing the square, we 
obtain 

(27rP)l( 2exp/o+yi ) {(O)! } S ~ -- erf - (n-n*) 
" (I Zoa*[3- exp{-2'YIJ P , 

( 1.24) 
where 

(4.25) 

is the error function. Note that in evaluating (4.20), 
we have assumed P( "I/o) i> 1 and extending the range 
of integration to - Q(). This restricts the range of 
validity of (4.24) to 'Yp2>o> (1+'YI)2, which includes 
most of the situations of current interest. Although 
both approximations have been made as a mathematical 
convenience and can be removed, there is little point 
in doing so since for 0 greater than 'YP2, n* lies above 
the last bound state of the molecule which is physically 
unacceptable, and for 0< [1+yt]2, the steady-state 
approximation is no longer valid. 

Substituting (4.24) into (4.6), we find 

x(n)=l- erf{(O/P)i(n-n*)}/erf{(2'Y)11, (4.26a) 

or in terms of fn, 

xCn) = 1- erff C2'Y)t- [2( O-fn ) JI} /erf{ (2'Y)i). 

(4.26b) 

A plot of X (n) as a function of (0 - fn) for several 
values of "I is shown in Fig. 1 (a). The maximum value 
of dxCn)/dn occurs at n=n*, and this in effect locates 
the position of a "bottleneck" in the excitation process 
at O-f*=,),. Below the "bottleneck," the vibrational 
levels are populated in accord with a Boltzmann 
distribution, while above the "bottleneck" the levels 
are depleted due to drainage to the continuum. In the 
case of recombination, the situation is of course reversed, 
and the popUlation is proportional to [l-x(n)] as 
shown by (2.10). 
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FIG. 1. Steady-state distribution functions for: (a) a quantized 
Morse oscillator and (b) classical Morse and Coulomb oscillators. 
The left scale refers to dissociation and the right to recombination. 
The parameter 'Y is defined by (4.22). 
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The steady-state dissociation rate constant obtained 
by substituting (4.24), into (4.8) is 

kd=lTcAae-~(1-e-8) (2P/rdJ)iG, (4.27) 
where 

G=(!-la )(1- ('Y/5)!)<3- expl-2'Y}) expl-'Yl . 
!-l12 1+ ('Y/5)! erfl (2'Y)!1 

( 4.28) 

Dividing (4.27) by the equilibrium constant 

K.= (g2/ g12) (fJ/47r1}) (2P /7rO) 1(1- e-8) e-8, (4.29) 

we obtain the corresponding steady-state recombination 
rate constant 

( 4.30) 

where g and g12 are, respectively, the electronic degen­
eracies of the free atoms and molecule. The factor ka 
defined in (4.30) is just the ordinary kinetic theory 
three-body collision rate constant. It is well known to 
give the right order of magnitude for the recombination 
rate, but contains almost no temperature dependence 
due to the fact that the positive temperature coefficient 
of the thermal speed c is nearly cancelled by the 
negative temperature coefficient of the cross section IT. 

This deficiency, however, is corrected by the factor G, 
which exhibits the appropriate negative temperature 
dependence in the range 5> (1 +'Y1) 2 where the steady­
state approximation is valid. 

Models similar to that discussed above have been 
investigated previously, both numericallyIl.20 and ana­
lytically,7·14.17 with generally similar results. The princi­
pal difference between the present work and previous 
analytical work is that we have included a detailed 
specification of the manner in which the transition 
probabilities vary with the energy of the oscillator. 
This leads to somewhat different conclusions about the 
location of the "bottleneck" and the temperature and 
mass dependence of the rate constant, but has little 
effect on its magnitude. 

Although the Morse oscillator model disposes of all 
the objections raised in the case of the truncated 
harmonic oscillator16 and is promising in terms of com­
parison with experiment, it is still open to criticism on 
the grounds that it only takes into account transitions 
between adjacent states. For this approximation to be 
valid, the single-step transition probability, an /2( WnT) , 

evaluated at the "bottleneck" must be appreciably less 
than unity. Since wnT=3'Y at the "bottleneck," this 
leads to the condition 

( 4.31) 

Using reasonable values for the parameters, i.e., P> 15, 
'Y""'!-la/!-ll2"" 1 , (4.31) shows that the one-step approxi­
mation is only valid at temperatures much lower than 
those usually of interest for dissociation or recombina­
tion and, thus, the single-step quantum model cannot 

be regarded as satisfactory for describing these processes 
and a multiple-step classical model must be considered. 

Classical Model 

For the classical model, the steady-state population 
distribution may be obtained by integrating either 
(3.10) or (3.42) with ax/at=o and replacing the 
boundary condition aX/aE [0=0 by x(O) =1. As is well 
known, the latter step is necessary to obtain nonzero 
solutions of the steady-state equation. Note that in the 
steady-state approximation, Eq. (3.42) is exact for a 
separable kernel. 

The general solution of (3.10) is 

Xl(E) =1-(f ~~) / (~a ~: +c), (4.32) 

and imposing the boundary condition 

( 4.33) 

obtained from (3.20) by setting A(t) =0, we find 

Xl(E) = 1-[f ~:] / [~8 ~: + 4m
1
(5) 1 (4.34) 

The corresponding steady-state dissociation rate con­
stant obtained by substituting (4.34) into (2.25) and 
using (3.12) with A(t) =0 is 

{ [f J dx 1 J1 1 kd1 = 2M. -+-_ .. 
o Ll2 4m" 5) J 

(-1-. t'i) 

The same procedure may be applied in solving 
(3.42), imposing in this case the boundary condition 

( 4.36) 

obtained from (3.44) with A(t) =0. The result for the 
steady-state distribution may be written 

X2(E) =1-[f w;:]/[~a W;: + ~~~~J, ( 4.37) 

and the steady-state rate constant is 

k = {M [fa Wdx ~]}-l. 
d2 e 0 Z2 +rcZ(5) 

( 4.38) 

For future reference we may note that the equilibrium 
rate constant obtained by setting X(E) =1 in (2.25) is 

kd.= m( 5) /M •. (4.39) 

We now use the above results to find the steady­
state population distributions and dissociation rate 
constants for classical harmonic, Morse, and Coulomb 
oscillators. 

Classical Harmonic Oscillator 

It is interesting to compare the solutions of 
and (3.42) for the simple separable kernel 

{

exp[ -a(E'-E) -E']: E'>E 
R(E', E) = , 

exp[ -a(E-E') -E]: E>E' 

( 3.10) 

( 4.40) 
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and dissociation rate 

100 exp[ae- (a+l)5J 
R(c, E) = 6 R(E', E) dE' (a+l) (4.41) 

From a physical point of view, this kernel gives a 
reasonable description of a truncated harmonic oscil­
lator near the dissociation limit where the variation in 
the pre-exponential factor with energy can be neglected. 

Comparing (4.40) and (4.41) with (3.26) and 
(3.27), we find 

r2(E) = exp[ -(a+1)EJ, 
and 

rc= exp[ - (a+ 1) 5J/(a+ 1) . 

It follows from (3.3) and (3.14) that for 5»1 

A2( E) =e-'2[a3+ (a+ 1)3J/a3(a+ 1)3, 

CR(5) =e-.l/a(a+l), 

and from (3.32) and (3.29) that 

WeE) =e-'(2a+ 1), 

Z(E) =e-'[2a+l- (a+l)e-a·J/a(a+l). 

( 4.42a) 

( 4.42b) 

( 4.42c) 

( 4.43a) 

(4.43b) 

( 4.44a) 

(4.44b) 

Substituting (4.44) into (4.37) and (4.38) and noting 
that the equilibrium distribution implied by (4.40) is 
N.(E) =e-' so that M.~I, we obtain for E»a-1 the 
exact specific distribution 

X2(E) = 1- exp[ - (5-E) Ja/(a+ 1), (4.45) 

and steady-state dissociation rate constant 

kd2 = e-6( 2a+ 1) / a( a+ 1) 3. ( 4.46) 

The corresponding approximate results obtained from 
(4.43), (4.34), and (4.35) are 

Xl(E) = 1- exp[ - (5-E) J[a/(a+ 1) J(1 +ta2 ••• ), 

( 4.47) 
and 

kdl =e-6[(2a+ 1) /a(a+ 1)3J(1 +!a2+ .. . ). (4.48) 

Thus, to terms of order a-2 the approximate equation 
(3.10), which is applicable to any narrow kernel, gives 
results in agreement with the exact results of Eq. (3.42) 
for a separable kernel. The condition a-2«1 means 
physically that the characteristic energy transferred in 
a collision must be somewhat less than the thermal 
energy kT of the background atoms. It can be seen 
later that this is expected to be the case. 

It should be noted that if we had used the integral 
equation itself, rather than (3.20) to obtain the 
boundary condition at E=B, the approximate equation 
would also have given the exact answer. This is be­
cause, for the particular separable kernel (4.40) em­
ployed in the analysis, A2 is proportional to Z2/W, so 

that the use of the exact boundary condition leads to 
the exact answer. 

Classical Morse Oscillator 

The vibrational transition rates near the dissociation 
limit of a rotating Morse oscillator have been investi­
gated by Woznick29 and Keck30 using numerical tra­
jectory calculations. The calculations were made for 
H2, O2, and I2 in Ar and O2 in Xe for values of B equal 
to 10 and 100. They covered the energy range from 0 to 
3 kT below the dissociation limits with statistical 
errors varying from ± 10% at the dissociation limit 
to ±20% at 3 kT below. Within the statistical errors, 
the "one-way" equilibrium flux of molecules across a 
surface a fixed energy 1] = B' - E below the top of the 
rotational barrier is given by 

( 4.49) 

where 

is the classical transition probability for a rotating 
Morse oscillator, 

hex) = 27r-tx!'o e-Y csch(xy-!)dy~t[4- exp( -4x/9) J 
o 

Xexp(-4x/9) (4.51) 

is the appropriate form of the adiabaticity factor in 
the classical case, 

( 4.52) 

is the effective frequency of a rotating Morse oscillator, 
Z2 is the most probable position of the rotational 
barrier, Zl is the corresponding inner turning point, cf> is 
a slowly varying geometrical factor having a value near 
t, bm = (B'-B)m is the height of the rotational barrier 
in units of kT at which the minimum in the effective 
potential disappears and other quantities are as previ­
ously defined. 

It was also found within the statistical errors that 

( 4.53) 

It may be noted that if the transition kernel R(E', E) 
is assumed to fall off exponentially with I E'-E I, then 
(4.53) implies a value of k T /2 for the characteristic 
energy transfer in a collision. Thus, the diffusion 
equation (3.10) should be a reasonable approximation. 

We may now evaluate the integral, 

(4.54) 
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appearing in our expression (4.32) for the steady-state 
distribution. Using (4.49) and (4.53), we find 

() 3 f.' exp{5-x+4('Yx)1/3)dx (4.55) 
S 1/ =2Zo q a(x)[4- exp{-4('Yx)!/3)]' 

The numerator in this integral has a maximum at 
x=4-y/9. Evaluating the denominator at the maximum 
and the remaining integral exactly, we obtain 

3 exp{5+4-y/9)Hoy{ (8'Y/9)!- (21J)!) (4.56) 
S(lJ) 2Zoa( 4-y/9) [4- expl-8'Y/9)] 

where 

Hoylt) = (4/3) (11"Y)! erf{t)+ expl-t2/2), (4.57) 

and erf {t) is the error function as defined by (4.25). 
The range of validity of (4.56) is 5> [1 + (4'Y/9)i]2, a 
condition which is also required by the steady-state 
approximation. Substituting (4.56) into (4.34), and 
noting that 17 = 0 corresponds to the dissociation limit, 
we obtain for the specific distribution during dissocia­
tion 

Hoy{ (h)i- (21J)i) 
X(lJ) =1 Hoyl(h)!)[1+tCR(O)S(O)]' (4.58) 

where from (4.49) and (4.56), we find 

2CR(0) S(O) =( 3Hoy{ (h)!) )(1+ (4'Y/95) i). (4.59) 
4- exp{ -h) 1- (4'Y/9o)! 

In the limit of impulsive collisions 'Y-t0 and (4.58) 
simplifies to 

(4.60) 

which is nearly identical to the result (4.47) for a 
value of a=2. This is to be expected since for 'Y-t0 
our treatment of the Morse oscillator reduces to that 
for the truncated harmonic oscillator. A plot of x(lJ) 
for several values of 'Y is shown in Fig. 1 (b) . 

The corresponding steady-state dissociation rate 
constant obtained using (4.35) and (4.39) is 

where 

is the equilibrium rate constant. 

( 4.61) 

( 4.62) 

Dividing (4.61) by the equilibrium constant (4.29), 
we obtain the steady-state recombination rate constant 

kr =kre/[2CR(0) S(O) +!], ( 4.63) 
where 

kr • = 47rt(g12/ g2) (wo/,8) a2Z22(Z2-Z1)4{1- exp( -bm)]~ 

(4.64) 

is the "barrier" rate constantl3 for a repulsive third 
body; kre may be evaluated with the aid of curves 
given in the Appendix and molecular constants tabu­
lated by Herzberg.59 

69 G. Herzberg, SPectra of Diatomic Molecules (D. Van Nostrand 
Company, Inc., New York, 1950). 
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FIG. 2. Ratio of steady state to equilibrium rate constants as a 
function of k T / D for various values of the parameter 'Y defined by 
(4.22). 

Equations (4.61) and (4.63) show that the effect 
of a non-Boltzmann distribution in the states near the 
dissociation limit is to depress the equilibrium rate 
constants by the factor [2R(0) S(O) +!J-I. A plot of 
this factor as a function of 5 for several values of 'Y is 
shown in Fig. 2, and it can be seen that the tempera­
ture dependence is at least qualitatively correct to ex­
plain the experimentally observed negative temperature 
dependence of the recombination rate. 

A quantitative comparison of the theoretical and 
experimental recombination rate constants for a variety 
of atoms recombining in excess argon at high tempera­
tures is shown in Table I. It can be seen that the 
theory reproduces the general trend of the data but 
predicts rate constants which are somewhat too large 
for the light atoms and a negative temperature depend­
ence, which is too weak for the heavy atoms. The most 
probable cause of these discrepancies on the theoretical 
side is the approximate nature of the potential60 used 
to represent the interaction of the third body and the 
molecule. In particular, the theoretical rate constant is 
quite sensitive to the range L of the interaction poten­
tial and the changes necessary to bring the theory into 
agreement with the experiments are less than a factor 
of 2 in all cases. However, in view of the discrepancies 
of a factor of 2 or 3 between the data of the various 
workers and the distinct possibility of further sys­
tematic errors in shock-tube measurements of this type, 
such changes are of doubtful significance. Unfortu­
nately, a meaningful comparison with the low-tempera­
ture data cannot be made at this time because the 
attractive van der Waals force which is important at 
low temperatures has not been taken into account in 
the theory. Work on this problem is in progress. 

A treatment of this problem which involves very 
much the same basic physical assumptions has been 

60 E. A. Mason and J. T. Vanderslice, J. Chern. Phys. 28, 432 
(1958) . 

Downloaded 07 Dec 2011 to 129.10.124.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



2296 J. KECK AND G. CARRIER 

TABLE 1. Comparison of theoretical recombination rate constants with the available shock-tube data for various homonuclear mole­
cules and inert gases. The rate constants have been reduced to the form k,=A (D/20 kT)"X 1014 cc2/mole-sec and the coefficients A 
and n are given in Columns 5-8. Columns 1 and 2 identify the molecule and inert atom. Column 3 gives the dissociation temperature 
of the molecule. Column 4 shows the temperature range covered by the experiments, and Column 9 gives the experimental reference. 
It should be noted that the values of n.xptl given in Column 6 are those determined locally and have a very large uncertainty. In par­
ticular, the values in parentheses were either assumed or determined from data covering a temperature range of less than a factor of 
1.5. The Cl2 rate measured by Hiraoka and Hardwick48 seems to be somewhat out of line with other experimental data. Possible reasons 
for this are discussed by Jacobs and Giedt.47 

D/k Range 
Molecule Atom (OK) (kT/D) A.xptl Atheoret nesptl ntbeoret Ref. 

HI Ar 52000 0.05-0.09 2.3 25 1 0.9 34 
HI Ar 52000 0.05-0.09 2.9 25 1 0.9 35 
Hs Ar 52000 0.05-0.09 5.8 25 1 0.9 36 
HI Kr 52000 0.05-0.09 5.8 25 1 0.9 36 
Hs Xe 52000 0.05-0.09 5.8 25 1 0.9 36 
Hs Xe 52000 0.05-0.09 4.5 25 0 0.9 37 

Dt Ar 52000 0.05-0.09 2.9 18 1 0.9 34 
Ds Ar 52000 0.05-0.09 2.7 18 1 0.9 35 
Ds Kr 52000 0.05-0.09 2.7 18 1 0.9 35 

Nt Ne 115000 0.05-0.08 4.7 2 0.5 0.5 38 
Ar 115000 0.05-0.09 2.3 2 0.5 0.5 38 
Ar 115000 0.05-0.08 1.6 2 0 0.5 39 

O2 Ar 60000 0.03-0.3 0.22 0.8 0 0.5 40 
O2 Ar 60000 0.06-0.11 0.6 0.8 !-1 0.5 43 
O2 Ar 60000 0.05-0.08 0.5 0.8 0 0.5 44 
O2 Ar 60000 0.07-0.08 0.17 0.8 (1) 0.5 41 
O2 Kr 60 000 0.06-0.09 0.5 0.8 (1) 0.5 41 
O2 Xe 60000 0.05-0.1 1.5 0.8 i-2 0.5 42 

Fa Ar 18 300 0.06-0.09 0.16 0.5 2 0.5 46 

CIs Ar 28600 0.06-0.09 3.2 3 1.6 0.5 47 
Cit Ar 28 600 0.05-0.1 30 3 1 0.5 48 

Br2 He 22 700 0.07-0.08 8.9 4 (5/2) 0.3 51 
Br2 Ar 22 700 0.05 8.2 4 0.3 50 
Brl Ar 22 700 0.06-0.08 7.5 4 (2) 0.3 51 
Br2 Ar 22 700 0.06-0.08 7.0 4 (2) 0.3 52 
Br2 Ar 22 700 0.06-0.08 3.8 4 m 0.3 53 

12 He 17 800 0.06-0.1 7.5 4 2.8 0.3 54 
12 Ar 17800 0.06-0.09 9.1 4 1.8 0.3 54 

given by Rice.3•lo The most important difference energy 7] below the dissociation limit of the form 
between Rice's treatment and ours is that Rice has 
made the approximation that the energy is transferred CR(7]) = CRT exp(87]/5)/(1])4, ( 4.65) 
in discrete amounts and assumed that the collisions where 
are impulsive, whereas we have treated the problem CRT = ,!c.(e2/kT)5ninl. (4.66) 
continuously and included an adiabaticity factor. This 

If we make the tentative assumption that the second leads to somewhat different predictions about the 
dependence of the rate constant on temperature and moment of the energy transfer, ~2(7]), is proportional 

species. to CR(7]) as in the case of the Morse oscillator, then the 
specific distribution during steady-state ionization 

Classical Coulomb Oscillator obtained from (4.34) is 

The de-excitation of a Coulomb oscillator by electron 4 1 
X(17) = 1- exp-hL ki Ci17 )k. ( 4.67) 

impact has been investigated classically by Makin and k-O • 

Keck,61 who obtained an expression for the one-way 
Note that in obtaining (4.67), we have set [4CR(I5)jl equilibrium flux of excited atoms across a surface an 
in (4.34) equal to zero, which is appropriate for a 

II B. Makin and J. C. Keck, Phys. Rev. Letters 11, 281 (1963). Coulomb oscillator since the "one-way" equilibrium 
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flux at the dissociation limit is infinite due to the 
infinite range of the force. A plot of x(7/) is shown in 
Fig.l(b). 

The corresponding distribution during recombination 
is Xr(7/) =l-X(7/) and a curve of this distribution is 
shown in Fig. 3 as a function of 7/. Also plotted in the 
figure is the population distribution for a recombining 
He+ plasma deduced from the measurements of Hinnov 
and Herschberg.55 Considering the arbitary nature of 
our assumption that .12 (7/) ex: CR(7/) , the agreement is 
remarkably good and suggests that there may be some 
basis for the assumption. A numerical investigation of 
this question similar to that carried out for the Morse 
oscillator is currently in progress. 

To calculate the ionization or recombination rate, 
the constant of proportionality between .12(7/) and CR(7/) 
must be known and, since the situation is quite un­
certain, we defer such calculations until the necessary 
information becomes available. 

V. CONCLUDING REMARKS 

In this paper we have investigated the coupled 
vibration-dissociation-recombination of a dilute mix­
ture of diatomic molecules in an inert gas. Both quan­
tum and classical models of the process have been 
examined, and it is concluded that the classical model 
is a better physical approximation than the frequently 
used one-step quantum model. The reason for this is 
that near the dissociation limit, transitions between 
states are so rapid that the perturbation treatment 
used to obtain the quantum-mechanical transition 
probabilities breaks down completely. On the other 
hand, this is just the situation in which the classical 
approximation is expected to be valid. 

In treating the problem classically, we have reduced 
the master equation governing the population distri­
bution to an equivalent diffusion equation with variable 
coefficients. This equation is the analog of the thermal 
diffusion equation with an effective heat capacity pro­
portional to the equilibrium population and an effective 
conductivity proportional to the second moment of the 
energy transfer in the collisions. The equation has been 
solved in the steady-state approximation for Morse 
oscillators interacting with repulsive third bodies. The 
effective conductivities (second moments) have been 
obtained from numerical trajectory calculations. The 
results show that the main effect of nonequilibrium in 
the vibrational degree of freedom during dissociation 
or recombination is to depress the reaction rate con­
stants below the values that would be computed for a 
Boltzmann distribution by an amount which increases 
as the collisions become more adiabatic (softer). A 
small additional negative temperature coefficient is 
also introduced but it is appreciable only for quite 
adiabatic collisions. 

A comparison of the results with the available experi­
mental data on the dissociation of homonuclear di-

10-4 '---:'-.L...1--L..1...J..J...'-_..L..-....L....I--L.L..L.J.J..I....l.-l 
.3 3 10 

7]=-E/kTe 

FIG. 3. Comparison of calculated steady-state distribution with 
experimental data of Hinnov and HirschbergOli for a recombining 
helium plasma. 

atomic molecules by inert gases at high temperatures 
shows reasonable agreement for a wide range of species. 
A meaningful comparison with low-temperature data 
on recombination cannot be made at this time due to 
neglect of the attractive van der Waals interaction in 
the potentials used. 

The theory may also be used to describe the ionization 
and recombination of atoms by electron impact. Un­
fortunately, there are no reliable data on the moments 
of the energy transfer for electronic excitation which 
properly include the effects of adiabatic collisions. 
However, by assuming that the first and second moment 
are proportional, it is possible to compute the popula­
tion distribution during recombination and a compari­
son with the experimental results of Hinnov and 
Hirshberg55 for a recombining He+ plasma shows 
surprisingly good agreement. 

To conclude, we feel that the agreement between 
theory and experiment is sufficiently good to establish 
that the classical diffusion treatment discussed above 
is a reasonably good physical approximation. In this 
connection, it may be noted that rotation has been 
effectively included in the theory by using effective 
conductivities from numerical trajectory analyses 
which refer to an energy coordinate measured from 
the top of the rotational barrier. An alternative ap­
proach which is currently being developed is to gener­
alize the diffusion equation to more dimensions and 
consider the simultaneous diffusion of both energy and 
angular momentum. Further problems which should 
also be investigated include: (1) the effect of attractive 
interactions between the molecules and third bodies, 
(2) the failure of the steady-state approximation at 
high temperatures, (3) the transient behavior at early 
times, (4) the nonlinear transient vibration-recombina­
tion process, and last but not least, (5) the use of the 
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theory to obtain information about the interaction 
potential. 
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APPENDIX: COMPUTATION OF BARRIER RATE 
CONSTANT 

For most cases of current interest, the "barrier" rate 
constant (4.64) for a Morse oscillator may be deter­
mined from the curves in Figs. 4(a) and 4(b) obtained 
from data in Refs. 13 and 29. The combination of 
factors given in Fig. 4(b) is a function only of the 
temperature and molecular parameters, while the com­
bination given in Fig. 4(a) involves an additional 
dependence on the effective collision radius a. The 
molecular parameters required have been tabulated by 
Herzberg.59 The collision radius is defined as the radius 
at which (dVs/dr) exp( - Vs/kT) has a maximum, 
where Vs is the interaction potential for an atom of 
the molecule and the "third body." For an exponential 
interaction of the Mason-Vanderslice form,60 

where 
a~LlnVo/kT, 

L=ao(Il+Is) /2tIH, 

Vo=4IH(ZIZs)!(Ids/h2) , 

(Al) 

ao is the Bohr radius, IH is the ionization potential of 
hydrogen, II and Is are the ionization potentials of the 
interacting atoms, and ZI and Zs are the charges of the 
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FIG. 4. Parametric curves for computing "barrier" rate con­
stant (4.64). 

interacting atoms. The Mason-Vanderslice potential 
gives a reasonable fit to the scattering cross sections 
of Amdur and co-workers and provides a simple method 
for estimating interactions which have not been meas­
ured. It does not include the van der Waals force, 
however, and cannot be used at low temperatures. 
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