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The dissociation and recombination of moderately complex molecules in a background of inert atoms has 
been investigated using a master equation with transition probabilities and spontaneous decay rates obtained 
from the statistical theory of reaction rates. A relatively simple expression has been derived for the steady­
state dissociation rate constant which is valid at all pressures for molecules containing three or more atoms. 
This expression has been used with reasonable success to correlate the available experimental data for 
21 molecules having from three to six atoms. 

I. INTRODUCTION 

The dissociation and recombination of moderately 
complex polyatomic molecules is important in many 
chemical and aerodynamic problems including the 
pyrolysis of hydrocarbons, combustion, ablating bound­
ary layers, and reacting wakes. Excellent summaries of 
previous experimental and theoretical work on this 
problem and references to original publications may be 
found in recent books by Nikitin1 and Bunker.2 Among 
the most successful theories are those of Rice, 
Ramsperger, Kassel, and Marcus8 and of Troe and 
Wagner.4 The former is valid at all pressures and has 
been used with reasonable success to correlate the 
experimental dissociation rate constants for a variety 
of polyatomic molecules. The latter is limited to low 
pressures but includes a discussion of adiabatic colli­
sions and electronic transitions. It has been used, also 
with reasonable success, to correlate the dissociation 
rate constants for a number of small molecules having 
three or four atoms. 

The present theory is similar to that of Rice, 
Ramsperger, Kassel, and Marcus and involves many of 
the same assumptions. However, it differs in detail and 
the results have been obtained in a somewhat simpler 
form which facilitates numerical computations. The 
analysis is based on an iterative solution of the one­
dimensional master equation describing the excitation 
and dissociation of molecules in a background of inert 
atoms. The spontaneous decay rates and vibrational 
transition probabilities used were obtained from the 

statistical theory of reaction rates.5- 7 The most impor­
tant assumption made is that the spontaneous decay 
rate is a function only of the energy of a molecule. 
This involves neglecting conservation of total angular 
momentum in the application of the statistical theory 
and probably leads to an overestimate of the magnitude 
of the dissociation rate. Nevertheless, it is felt that the 
form of the results is basically correct and the theory 
has been used with considerable success to correlate the 
experimental dissociation rate constants for 21 mole­
cules having from three to six atoms.8-31 
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42, 2132 (1965). 
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3212 J. KECK AND A. KALELKAR 

II. MATHEMATICAL MODEL 

We shall consider gas-phase reactions of the type 

M1+M::±M1*+A (2.1) 
and 

Substituting (2.4) into (2.3), and integrating over e 
using the approximation 

(2.2) we obtain the phenomenological rate equation 

in which the atoms A are inert and the molecules MI 
contain at least three atoms. We assume (1) the con­
centration of MI is sufficiently small that isothermal 
conditions prevail, (2) electronic transitions do not 
occur, (3) the spontaneous decay rate of MI molecules 
is a function only of their internal energy E, (4) the 
internal degrees of freedom of M2 and Ms molecules are 
in equilibrium at the temperature T of the A atoms, 
and (5) the level density of MI molecules in the vicinity 
of the dissociation limit D is large compared to (kT)-I. 
Under these conditions the progress of the reactions 
(2.1) and (2.2) can be described by the classical master 
equation 

aN(e, t) = f.'" [K(e, e')N(e', t) -K(f', e)N(e, t)]de' 
at 0 

+KT(e) [M2(t)][Ms(t)]-Ka(e)N(e, t), (2.3) 

where e=E/kT is the energy in units of kT, N(e, t) is 
the concentration of IVh per unit e and K(f', e) is the 
rate constant per unit e' for transition from e to e', and 
[M2(t)] and [Ms(t)] are, respectively, the concen­
trations of M2 and Ms. 

Under steady-state conditions, the solution of (2.3) 
which satisfies the boundary condition 

N( 00, t)/[M2(t) ][Ms(t) ]=N.( 00 )/[M2].[Ms]. 

N(e, t) = (N(O, t) _ [M2(t)][Ms(t)])x(e) 
N.(e) N.(O) [M2]e[Ms]. 

+ {[M2(t) ][Ms(t) ]/[M2].[M3]e} , (2.4) 

where the subscript e denotes equilibrium, and the 
distribution function x(e) satisfies the boundary 
conditions x(O) = 1 and x( 00 ) =0 and the integral 
equation 

x(e) = [Kc(e) +Ka(e)]-1 f.CO K(e', e)x(e') ke', (2.5) 
o 

where 

Kc(e) = f.co K(e', e) de' 
o 

(2.6) 

is the collision rate for molecules of energy e. 

28 T. Carrington and N. Davidson, J. Phys. Chern. 57, 418 
(1953). 

28 L. M. Brown and B. de B. Darwent, J. Chern. Phys. 42, 
2158 (1965). 

all A. P. Modica and J. E. LaGraff, J. Chern. Phys. 43, 3383 
(1965) . 

31 I. D. Gay, R. D. Kern, G. B. Kistiakowsky, and H. Kiki, 
J. Chern. Phys. 45,2371 (1966). 

32 J. Keck. and G. Carrier, J. Chern. Phys. 43, 2284 (1965). 

where the steady-state rate constants for recombination 
kT and dissociation ka are given by 

ka[Ml]. = kr [M2].[M3]. 

= 1'" Ka(e) N.(e)x(e) de. (2.9) 
o 

III. TRANSITION RATES 

To obtain expressions for the transition rates Ka(e) 
and K(e', e) necessary to evaluate the steady-state rate 
constants, we shall use the statistical theorr7 of 
reaction rates. In this theory, it is assumed that the 
rate of decay of an unstable complex into a given final 
state is simply proportional to the rate of flow of states 
in phase space across the boundary of the complex 
into that state. This assumption is valid when the 
interactions are sufficiently strong to produce a uniform 
distribution of products in all final states. In practice it 
undoubtedly overestimates the relative importance of 
large energy transfers and this in turn will lead to an 
overestimate of the rate constants. Nevertheless, the 
theory represents an important limiting case and the 
rate constants obtained from it may be regarded as 
upper bounds to the true values. 

A. Spontaneous Dissociation Rate 

According to the statistical theory, the rate constant 
for the spontaneous decay of MI molecules is 

(3.1) 

where r 2s (e) is the rate of flow of states of MI into 
states of M2+Ms per unit e and Ql(e) is the density of 
states of M1 per unit e. 

If we assume that the rotational and vibrational 
motions of the molecules can be approximately sepa­
rated, then the density of states can be written 

QI(e) = L Qlr(e-e.), (3.2) 

where 

• 
E.= Lk;8.; 

;=1 

is the vibrational energy in units of kT, 

(3.3) 

(3.4) 
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is the density of rotational states at the energy x and the 
summation in (3.2) is over all vibrational states with 
10.:::;10. In (3.3) v is the number of vibrational modes of 
M1, e •• =hcwvi/kT, and k. is the number of quanta in 
the ith mode. In (3.4) 21' is the number of rotational 
modes and hr=Hr(p, q)/kT is the rotational Hamil­
tonian in units of kT. If we assume the rotational 
Hamiltonian is that of a classical rigid rotor,33 then 
(3.4) gives the familiar result 

Under these conditions7 

r 23 (E) = l'-a r' Q2(X-y)Q3(y)k23 (E, x)dydx, (3.10) 
o 0 

where fJ=D/kT, D is the minimum value of <I> on the 
boundary 1'=a, Q2 and Qs are the densities of states of 
M2 and Ma given by the appropriate form of (3.7), 

(3.11) 

where 
(3.5) is the rate of flow per unit 10 of a state of M2+Ms 

across the boundary l' = a, 

2r ( kT )1/2 
Qr=1I"r-1 II -­

i=1 hcBri 

(3.6) 

is the rotational partition function and Bri is the 
rotational constant for the ith principal axis. 

Note that (3.3) is a reasonable approximation for 
polyatomic molecules for which the principal con­
tribution to the sum in (3.2) comes from states of low 
vibrational energy, but is not valid for diatomic 
molecules for which the density of states is largest near 
the dissociation limit. This is the reason the theory is 
restricted to polyatomic molecules with three or 
more atoms. 

For v> 1, the evaluation of the sum in (3.2) can 
become quite tedious. However, we can obtain a good 
approximation in the high-energy limit by converting 
the sum to an integral. This gives for 10 ~EvO 

where 

• e v= lIe· 11 - VI (3.8) 
i=l 

is the reciprocal of classical vibrational partition 
function for M1 molecules, 

v 

Evo=! L: ev ; 
;=1 

(3.9) 

is the zero-point energy of the oscillators in units of kT, 
and N='II+1'. For most cases of interest, E>Eva and 
(3.7) is satisfactory. 

To calculate the flow rate r 2S (E) , we consider a 
collision complex of radius a such that, if the separation 
l' between M2 and Ms is greater than a, the interaction 
is negligible or repulsive for all orientations of the 
molecules, while, if the separation is less than a, the 
interaction is attractive at least for some orientations. 
We further assume that on the boundary 1'=a the 
interaction potential <I> is independent of the internal 
vibrational state of M2 or Ma and is a function only of 
the position and orientation of M3 with respect to M2. 

aa J. E. Mayer and M. G. Mayer, Statistical Mechanics (John 
Wiley & Sons, Inc., New York, 1940). 

(3.12) 

is the translational partition function per unit volume, 
J.l.2s=fn2ma/(fn2+ma) is the reduced mass of M2 and Ms, 

(3.13) 

is the mean thermal speed for the collisions, 

(3.14) 

is an effective decay cross section, 4>=<I>/kT, and g is 
the number of ways M1 can decay into M2+ Ms, e.g., 
four for the reaction CHc~CHs+H. In (3.14) 4>l and 4>2 
are the two polar angles giving the direction of l' with 
respect to the principal axes of M2 and 4>3, 4>4, and 4>6 
are the three Euler angles giving the orientation of the 
principal axes of Ms with respect to those of M2. Note 
that we have assumed M2 to be of lower symmetry 
than Ms . 

In principle G"2S can be calculated if the potential <I> is 
known. Since this is not usually the case, it is more 
realistic to assume G"23 is approximately a constant and 
regard it as an adjustable parameter to be determined 
by experiment. Fortunately in many practical cases, 
the dependence of the results on G"23 is quite weak and 
only its order of magnitude is required. This may be 
obtained from (3.14) by estimating the probability 
that <I> is attractive for various orientations of the M2 
and Ms. On this basis it is reasonable to anticipate that 
G"23/1I"a

2 will be of order (41\") -1 if Ma is spherically 
symmetric so that 4> is independent of 4>3, 4>4, and 4>6, of 
order (41\")-2 if Ma has axial symmetry so that 4> is 
independent of CP6, and of order (211")-1(41\")-2 otherwise. 

Evaluating (3.10) we obtain 

f23(e) =G"23C23Q23Q. L: [(e-fJ-Eu)a+1/(s+1) !J, 
... ;5;..-.1 

where 
(3.15) 

(3.16) 
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is the sum of the vibrational energies of M2 and Ma, 

28 ( kT )1/2 
Q.= 7ro- l II -­

i~l hcB.i 

(3.17) 

is the product of the rotational partition function 
forM2+Ma. 

The sum of the number of rotational degrees of 
freedom of M2 and Ma and 

1= 1 if Ma monatomic, 

=2 otherwise. (3.18) 

Note that v+2r=u+2s+3=3nl-3 where nl is the 
number of atoms in MI. 

Using (3.15) and (3.7), the spontaneous decay rate 
(3.1) is found to be 

Kd(e) =vd[(N -1) 1/ (s+ 1) !J[8v/(e+evo) IN-l 

X L: [(e-0-eu)/8uJS+l, (3.19) 

where 
(3.20) 

is a characteristic frequency which depends only on 
molecular parameters and 

u 

8 u
u = II 8ui 

i=l 
(3.21) 

is the reciprocal of the classical vibrational partition 
function for M2+ Ma. 

B. The Transition Kernel 

For the transition kernel the statistical theory gives7 

K(e', e)N.(e) = {[AJ[MIJ./QlAQrQvl 

f'" ('Y(X, Eh(x, E')) d X e-X x 
o r(~ , 

(3.22) 

where e> is the larger of e or e', 

N.(e) = [MIJ.nl(e) e-'/QrQ. (3.23) 

is the equilibrium concentration of Ml per unit e, 

Q.= tr [1-exp( -8. i )]-1 (3.24) 
i=l 

is the vibrational partition function of M1, 

QIA = (27rJl.lAkT / h2)3/2 (3.25) 

is the translational partition function for relative 
motion of Ml and A, Jl.lA = mlmA/ (ml +mA) is the 
reduced mass of Ml and A, 

(3.26) 

is the rate of flow per unit e and x of states of Ml at 
e across the boundary of the collision complex formed 

by Ml and A at x, 

k1A(X, e) =UIACIAQlA(X-E) (3.27) 

is the appropriate form of (3.11), CIA is the mean 
speed for collisions of A and M1, UIA is an effective 
energy-transfer cross section, and 

rex) = IX 'Y(x, e')dE'. 
o 

(3.28) 

Since we shall be interested in K (E', E) for values of 
e' and E of order 0»1 we may use the approximation 
(3.7) for nl(E) in (3.23) and (3.26). Substitution into 
(3.22) then gives 

K(e', E) =vc[(N+l) 1/(N-l) !J(e'+Evo)N-l 

f'" (x-e) (x-e'») 
X ,> exp(E-x) (x+e.o)N+l dx, (3.29) 

where vc=ulAclA[AJ is the collision frequency. Inte­
grating (3.29) over e' we obtain the collision rate 

Kc(E) = [0 K(E', E)de'=vc. 
o 

(3.30) 

The integral in (3.29) cannot be evaluated in terms 
of elementary functions. However, an excellent ap­
proximation can be obtained for e'''''e' "-'0» 1 by making 
the substitution 

(X+EvO)N+l~(E+e.o)N+l exp[17(x-e)J, (3.31) 

where 17 = (N + 1) / (O+Evo). This gives 

K(e', e)/vc=[172/(1+17)aJ[2+(1+17) (~-E')J 

X exp[ -17(e-e')]: e' <e 

= [172
/ (1+17)aJ[2+ (1+17) (e' -e) J 

X exp[ - (e' -e)]: e'>E, (3.32) 

where we have been careful to preserve the normaliza­
tion (3.30). 

It follows from (3.32) that K(E', e) has a relatively 
strong maximum at 

Em' =E- (1-17) / (1 +17)17. (3.33) 

Thus the most probable result of a collision is de­
excitation with an energy loss LlE"-'(1-17) / (1 +17h. 
The fraction a of collisions leading to de-excitation 
can be obtained by integrating (3.32) over E' from 
o to E. This gives 

a= [' K(e'E) dE' 
Jo Vc 

(3.34) 

which is close to unity for conditions of experimental 
interest, i.e., 17 ;S~. It should be borne in mind, however, 
that (3.34) is probably somewhat of an overestimate 
because, as previously observed, the statistical theory 
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undoubtedly gives too much weight to large energy 
transfers. It is in fact only the decreasing density of 
states at smaller 10 which limits the losses to reasonable 
values. A possible refinement of the theory which we 
shall not consider at present because of the additional 
complication it introduces would be to include an 
adiabaticity factor to cut off large energy transfers. 

IV. STEADY-STATE DISTRIBUTION 

For a relatively wide kernel of the form (3.32) a 
good approximation to the steady distribution function 
x(e) required to compute the rate constants from 
(2.9) may be obtained by iteration of (2.5). This leads 
to the recursion relation 

X(iH) (e) = [vc+Kd(e)j1 [" K(e', e)x(i) (10') de', (4.1) 
o 

in which we have used (3.30). If we start with the 
trial function x(O) (e) =1 corresponding to an equilib­
rium distribution, we obtain the first iterate 

This is the form usually employed in theories of uni­
molecular decay. A better approximation may be 
obtained by substituting (4.2) back into (4.1) and 
observing that x(l)(e) falls rapidly to zero for 10>5*, 
where 0* is the energy at which the collision frequency 
equals the spontaneous decay rate, that is 

(4.3) 

This gives the second iterate 

This gives 

1
8* 

X(8) (e) = [vc+Kd(e) J-1 a(o*, e')K(e', e)de', (4.7) 
o 

which may be evaluated using (3.32) and (4.6) and 
gives for 10>0* 

X (8) (e) 21)4(2+1))[2+(1+1)) (e-o*)J 
x(2)(e) ~1- (1+1))8[1+31)+1)(1+1))(e-5*)J' (4.8) 

It can be seen from (4.8) that for small 1) the ratio of 
x(8)(e) to x(2)(e) is very close to unity for all 10>5*. 
In particular for 1)<!, 1>x(8) (e)/x(2) (e) >22/27, which 
is a negligible correction for our purposes. For 10<5* 
the correction is considerably smaller. We shall there­
fore use X(2) (e) in our calculation of the rate constants. 

V. DISSOCIATION RATE CONSTANT 

Substituting (4.4) into (2.9) and using (4.2) we 
obtain the dissociation rate constant 

(5.1) 

The corresponding recombination rate constant k. can 
be obtained by reflection through the equilibrium 
constant as indicated in (2.9). 

Since Kd(e)<<Vc for 10<0* and Kd(e)>>vc for 10>0* we 
can obtain a reasonable approximation to kd in the form 

(5.2) 
where 

f8. 
kd1 = (QrQ.)-l 18 a(o*, e) r28 (e)e-Eae (5.3) 

(4.4) is a unimolecular contribution and 
where 

1
6. 

a(o*, e) =vc- 1 K(e'e)de' (4.5) 
o 

is the fraction of collisions in which molecules of energy 
10 are transferred to states of energy 10':5, 5*. Using 
(3.32) for K(e', e) we find from (4.5) 

(
31]2+1)8 1)2(5*-10)) 

a(5*, e) = 1- (1+1))8 + (1+1))2 

X exp[ - (0*-10)]: 10:5,0* 

( 
1+31) 1)(10-0*)) 

= (1+1))3 + (1+1))2 

10>0*. (4.6) 

It follows from (4.6) that for 10<5*, x(2)(e) is close to 
x(1)(e) while for e>o*, x(2)(e) decreases much more 
rapidly than x(I)(e). Thus the use of X(l) (e) to calculate 
rate constants leads to something of an overestimate. 

To show that the iteration procedure converges we 
can compute the third iterate in the same manner. 

kd2=Vc(QrQ.)-1 t" a(o*, e)Q1(e)e-Ede (5.4) 
16* 

is a bimolecular contribution to the total rate constant. 
Evaluating (5.3) and (5.4) using (3.7), (3.15), (4.6) 
and the approximation (3.31), we find 

k ( Qu8.r--1) -6 " ( ) (S+l, ~-e,,) !) 
dl =Vda Q 8-\-1 e £....J exp -IOu 

.8" E .. :;;.1 (s+ 1) !Q .. 

(5.5) 
and 

( ~+5+e.o)N-1) 
kd2 = vcaf3. (N-l)! exp[-(~+o+e.o)J, (5.6) 

where 

fj.= tr (2/8. i ) sinh(8.i2) (5.7) 
i=-1 

is factor which is very close to unity in the classical 
limit but may be large in the quantum limit, 

(s, x)!= [' y'e-udy 
o 

(5.8) 
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is the incomplete factorial function, and .1=~*-~ 
satisfies the equation 

Pc eN -1)! ( B. )N-l (.1)*1 
~ = (s+1)! .1+~+~.o B" G,,(s+l, .1), 

(5.9) 
where 

classical limit the pre-exponential factor is temperature 
dependent. This is due to the change in the number of 
translational and rotational degrees of freedom which 
occurs during dissociation but not during isomerization. 

B. Classical Limit 

G,,(s+I,.1) = 1: (1-~/.1)·+1. 
... ::;4 

(5.10) In the classical limit the sum in (5.10) may be 
approximated by an integral and we find 

Using (5.9) and the recursion relation 

(s+l) (s,.1)!= (s+I,.1) !+.1s+1e-4 , (5.11) 

(5.5) and (5.6) may be combined to give the total 
dissociation rate 

G,,(s+1, .1):~{(s+l) !/(M+l)!J 

X (B,,/ .1)s+I[(.1+EuO)/B"JM+l, (5.16) 

where M =u+s. Using (5.16) we obtain from (5.9), 
(5.12), (5.13), and (5.14) 

kd = Pca,B.'Y[ (.1 +~+E.O)N-l / (N -1) !J exp[ - (.1 +~+E.O) J kd~Pca,Bu'Y[ (.1 +~+EvO) N-l/ (N -1) !J 

(5.12a) 
= a0"2sc2aQ28 ( Q.Q .. / Q,.Q.) e-B 

X 1: exp( -~)[(s, .1-~) !/s!Q .. J, (5.12b) 

where 
lu$4 

'Y=kd/kd2 

= ! (s+l) !.1kGu(s+l+k, .1) 
k=1 (s+l+k) !Gu (s+l,.1) 

(5.13) 

is the ratio of the total rate constant to the bimolecular 
contribution. 

These expressions are valid for molecules with 
D> E.o= kTEvo at all pressures and temperatures for 
which .1+~+Evo>N+(N)1/2. Equation (5.12a) is 
convenient for calculations at low pressures since it is 
relatively insensitive to .1 under these conditions, and 
(5.12b) is convenient at high pressures for the same 
reason. 

In general the calculation of kd is sufficiently com­
plicated to justify the use of a computer. However in 
several important special cases it can be simplified 
sufficiently to carry out with a slide rule. These cases are 
considered below. 

A. High-Pressure Limit 

The high-pressure limit 

k", = a0"23c23Q23 ( Q.Qu/QrQ.) e-6 (5.14) 

is approached in the region defined by .1>s+1 and 
Euo>u+s+1-.1 in which 

L: exp( -~)(s, .1-~) !/s!4?". (S.15) 
... $4 

It may be noted that k", has a form similar to that 
given by the theory of absolute reaction rates34 which 
differs from the high-pressure rate constant obtained 
in theories of isomerization.1.2 In particular even in the 

a4 S. Gladstone, K. J. Laidler, and H. Eyring, The Theory of 
Rate Processes (McGraw-HilI Book Co., New York, 1941). 

X exp[ -(.1+~+E.O)J (5.17a) 

~k",(M, .1+~uO) !/M!, (5.17b) 

where flu is given by the appropriate form of (5.7), 

'Y~[(M, .1+EuO) !(M+1)/(.1+EuO)M+IJ exp[(.1+EuO)J, 

(5.18) 
and .1 satisfies the equation 

Pc (N -1) ! ( B. )N-l (.1+Euo)M+I 
-~ -- (5.19) 
Pd (M+l)! .1+~+E.O B" . 

These approximations are valid in the region where 
B.< 1, Bu< 1, and .1> 8,,(s+ 1 +u/2). 

C. Quantum Limit 

In practice it is found that much of the avail­
able experimental data fall in the low-pressure 
quantum-mechanical region defined by .1<s+1, 
8 .. >.1/(s+1+!u). In this case only the lowest vibra­
tional state of the product molecules makes an appre­
ciable contribution sum in (5.10) so that G .. (s+1, .1)~1 
and (5.12) becomes 

k~Pca.B.'Y[(.1+~+E.o)N-l/(N -1) !J 

~kcn(s,.1) !/s!Q .. , 

where 

X exp[ - (~+~+E.O) J (5.20a) 

(S.20b) 

'Y~[(s,.1) !(s+1)/.1B+IJe4 (5.21) 

and .1 satisfies the equation 

(S.22) 

In many cases of interest .1«O+EvO and (5.22) can be 
approximately solved to give 

~~Xl/(S+l)+(N-l)( hew. )X2/{S+l), (S.23) 
B. s+1 D+E.o 
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where 

x= 1I.(s+1)! (8,,)6+1 (5+E.O)N-l 
IId(N-1)! 8. 8. 

= (UlAP/U23P23) (kT/hew.) 1/2 (5.24) 

is a density-dependent parameter having an almost 
negligible temperature dependence over the range of 
interest, 

Po(N-1)! (f.LIA)I/2( hew. )N-l (5.25) 
P23= £V23(S+1)! f.L23 D+Evo 

is a critical density, 

(5.26) 

is a characteristic molecular volume, and £ is 
Loschmidth's number. 

D. Apparent Activation Energy and Order of a Reaction 

For comparison with experimental results over a 
limited range of temperature and density it is often 
convenient to approximate the rate constant in the 
standard form 

kd=Cpm exp( -EA/RT), 

where C is a constant, 

m= (a lnkd/il lnph 

(5.27) 

(5.28) 

is the order of the reaction with respect to the A atoms, 
and 

EA=RT2(il lnkd/ilT)p 

is the apparent activation energy. 

(5.29) 

4,-------,-------,-------,----, 

'" CD 

2 

-I 

NOC.t 

N02 

BrCN 

LOW PRESSUR 

NH" 

N2H4 

HIGH PRESSURE 

CtCN CHF" C2 H4 C
2

F
4 

(CN 21 /'---------
'" NF2 QUANTUM",,'" '" / 

CF2 , '" '" 
",,Jo<.;..CLASSICAL, .-0 '" CF4 

~Oy "" QUANTUM ~ CLASSICAL, •• CD 

-Q5 ~5 

(t.- S-Il/(S+Il+(t.-S-Il/u 

FIG. 1. Domain map showing approximate conditions under 
which dissociation experiments on various molecules have been 
carried out. Note the scale change at the origin. Also note that 
the boundary between the quantum and classical domain depends 
on the number u of vibrational modes of the products. See text 
for definition of symbols. 

4 

3 

2 

o 

>< 
8 0 
...J 

o 

o 

-I 

-.4 -.2 0 .2 .4 .6 .8 1.0 1.2 
LOG (t.18,,) 

FIG. 2. Numerically computed curves relating logx and 
log (f./II.) for five- and six-atom molecules. The straight lines 
denoted (f./II.)ttl are asymptotes for small x. The origin for 
different values of s has been displaced to avoid excessive over­
lapping. See text for definition of symbols. 

Substituting (5.12) into (5.28) and (5.29) we fin 
in general 

m-1 - r [1_(N-1)( A )G .. (S+1,A)] 
p+1 A+5+EvO G .. (s, A) (5.30) 

and 

D-EA=RT{v+r-s+[(s+1)hJ-(m/2) -4+ (2/a) 

-[ L: Eu exp( -Eu ) (s, A-Eu ) IJ 
'u::;A 

x[ L: exp( -Eu ) (s, A-E,.) !]-1}, (5.31) 
eu::;A 

where 

v= t 8 vi[exp(8 •• ) -1J-l (5.32) 
_1 

is essentially the number of classically excited vibra­
tional modes of MI. 

In the classical domain where (5.16) applies 

(5.33) 

and 

D-EA~RT{v+r-s+[(M+1)hJ 

- (m/2) -4+ (2/a) -it}, (5.34) 
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JL 0.1 
koo 

C2 F4 
1400"K 

.01L-~L-~--~~--~--~~~---L--~-L~L-~---L~~ 

1.0r--,r---r--rT;r----.---.-.---JiI"I'"-----.---r----r=-r-----r---,-----r-rl 

FIG. 3. Numerically computed values 
of k/k", as a function of the parameter A 
for five- and six-atom molecules. The 
upper and lower dashed curves are, 
respectively, the high-pressure classical 
and low-pressure quantum limits given 
by Eqs. (5.17) and (5.20). 

k 0 I 
koo' 

.01~1 --~~~~~~~2--~4~6~8~1--~2---4~6~8~1L-~--~~~ 

A A 

where 
U 

u= L: 8 Ui[exp(8ui) _l}-1 (5.35) 
i=1 

is the number of classically excited vibrational degrees 
of freedom of the product molecules M2 and Ma• 

In the high-pressure limit m--tO and D-EA--t 
RT[v+r-s-4+(2/a) -u] while in the low-pressure 
quantum limit m--t1 and D-EA--tRT(v+r-!+2/a). 

VI. COMPARISON WITH EXPERIMENTAL 
RESULTS 

The molecular constants necessary to evaluate the 
dissociation rate constant were obtained from the 
JANAF Tables35 and the AlP Handbook.36 They are 
summarized in Table I for the reactions of interest. 
Two lines are used for each reaction. The top line of 
each pair lists the reactant molecule and catalyst and 
gives their properties; the bottom line lists the dis­
sociation products and their properties. Note that we 
have omitted reactions in which a change in electronic 
state occurs on dissociation because the theory does not 
apply in this case. Such reactions have been treated by 
Troe and Wagner.4 

For reactions such as C2F4--tCF2+CF2 which involve 

35 JAN AF Thermochemical Tables (Dow Chemical Co., Mid­
land, Mich., 1965). 

36 American Institute of Physics Handbook, D. E. Gray et at., 
Eds. (McGraw-Hill Book Co., New York, 1957). 

only the breaking of a single bond, the true activation 
energy D is assumed to be the dissociation energy Do. 
For reactions such as CHFa--tCF2+HF which involve 
the breaking of two bonds and the formation of a new 
one, we expect D> Do and in these cases D was deter­
mined from the observed activation energy. The test of 
the theory is then the degree to which it predicts the 
magnitude and pressure dependence of the rate con­
stant. 

For reactions involving CN as a product, we have 
based our values of Do on the value of 125 kcal/mole 
given by Tsang et al.24 for (CN)2--t2CN since this gives 
the best fit to the data. However a lower value of 111 
kcal/mole also gives a reasonable fit and a higher value 
of 143 kcal/mole cannot be ruled out. 

The temperature-, density-, and cross-section­
dependent parameters which enter the calculations are 
summarized in Table II for mean experimental condi­
tions. The energy exchange cross section 0'1A was 
assumed to be 3 X 10-16 cm2 in all cases. The spontaneous 
decay cross section was assumed to be 10-16 cm2 if either 
product was monatomic, 10-17 cm2 if either product was 
linear and only a single bond broken, and 2 X 10-18 cm2 

otherwise. These values were chosen to fit the experi­
mental data and are in rough accord with the discussion 
in Sec. III. 

For three- and four-atom molecules, all of which fall 
in the low-pressure quantum domain, we have used the 
approximation (5.23) to determine the parameter ~ 
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TABLE I. Molecular parameters used to evaluate rate constants. The reaction is specified in the first column. Note that we have 
omitted the catalyst in the "products" column to save space. The values were computed from data in Refs. 35 and 36, and the experi-
mental papers cited. 

Reactants /lolA 2r v N Do Br w. E.o log V 23 (cm8) 

Products 1-'23 2s U M D B. w" Evo logP23/pa 

(kcal) (em-I) (em-I) (em-I) 

03+Ar 22 3 3 4.5 24.2 0.85 1050 1 660 -24.5 
O2+0 11 2 1 2 24.2 1.45 1580 790 2.4 

NOCI+Ar 25 3 3 4.5 37 0.46 760 1 360 -24.2 
NO+Cl 16 2 1 2 37 1. 70 1904 952 1.3 

NF2+Ar 23 3 3 4.5 66 0.66 830 1 290 -24.5 
NF+F 12 2 1 2 66 1.10 980 490 0.8 

NO!+Ar 21 3 3 4.5 72 1.14 1190 1 890 -24.7 
NO+O 10 2 1 2 72 1.70 1904 952 1.5 

CF2+Ar 22 3 3 4.5 106 0.80 1050 1 660 -24.6 
CF+F 12 2 1 2 106 1.43 1308 654 0.6 

H2O+Ar 12 3 3 4.5 117 15.8 2790 4500 -24.2 
OH+H 1 2 1 2 117 18.9 3735 1 867 1.9 

S02+Ar 25 3 3 4.5 131 0.59 930 1 520 -24.3 
80+0 12 2 1 2 131 0.71 1124 562 0.2 

BrCN+Ar 29 2 4 5 83 0.13 560 1 750 -23.8 
CN+Br 20 2 1 2 83 1.90 2069 1 035 -1.4 

CICN+Ar 24 2 4 5 93 0.20 690 1 850 -23.9 
CN+CI 15 2 1 2 93 1.90 2069 1035 -1.2 

N02CI+Ar 27 3 6 7.5 29.5 0.21 740 2 600 -24.7 
N02+CI 20 3 3 4.5 29.5 1.14 1190 1 890 1.0 

H20 2+N2 15 3 6 7.5 50 1.9 1450 5 520 -25.8 
OH+OH 9 4 2 4 50 18.9 3735 3 735 1.1 

NH3+Ar 12 3 6 7.5 85 1.84 2240 7 530 -25.7 
NH+H2 1.8 4 2 4 92 2.95 3820 3 850 -1.1 

(CN)2+Ar 23 2 7 8 125 0.16 670 3410 -27.9 
CN+CN 13 4 2 4 125 1.90 2069 2 069 -1.2 

CHF3+Ar 26 3 9 10.5 59 0.28 1050 5 470 -28.1 
CF2+HF 14 5 4 6.5 70 2.25 1490 3 730 -0.2 

CH.+Ar 11 3 9 10.5 101 5.30 1957 9480 -25.2 
CHa+H 3 6 7.5 101 7.40 1780 5 850 -1.1 

CF2+Ar 28 3 9 10.5 122 0.19 766 3760 -26.4 
CFa+F 15 3 6 7.5 122 0.27 805 2660 -4.3 

N2O.+N2 18 3 12 13.5 12.7 0.13 601 4 970 -29.7 
N02+N02 23 6 6 9 12.7 1.13 1200 3 780 3.3 

N2F.+N2 18 3 12 13.5 19.8 0.12 604 4 160 -30.4 
NF2+NF2 26 6 6 9 19.8 0.66 830 2 580 3.1 

NzH.+Ar 18 3 12 13.5 58 1.60 1543 10 960 -28.6 
NH2+NH2 8 6 6 9 58 6.40 2630 8400 0.7 

C2F.+Ar 29 3 12 13.5 75 0.11 619 4 670 -30.2 
CF2+CF. 25 6 6 9 75 0.79 1080 3 320 -2.6 

CzH.+Ne 12 3 12 13.5 44 1.60 1561 10 680 -25.4 
C.H2+H2 1.9 4 8 10 72 9.10 1440 7 850 -2.3 
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TABLE II. Temperature-, density-, and cross-section-dependent parameters used to evaluate rate constants. The values shown are 
based on molecular parameters in Table I and mean experimental temperatures and densities. The cross section "IA was assumed to 
be 3X 10-11 emS in all cases; the cross section "2a was assumed to be 10-16 em! if either product was monatomic, 10-17 em! if either product 
was linear and only one bond is broken, and 2XIO-il otherwise. Note ko=/lca{kf. 

Reactants T (J. E.O 10gQ. 10g,B. i! 8 loga logko 

Products p/p; (J" E"O 10gQ" 10g,B" u A log-y logk .. 

(OK) (sec-I) 

Oa+Ar 800 1.89 3.0 0.28 0.16 1.1 15.1 -0.07 8.3 
0s+0 0.2 2.84 1.4 0.02 0.13 0.2 0.1 0.01 6.4 

NOCHAr 1100 1.00 1.8 0.77 0.10 1.7 16.8 -0.06 8.7 
NO+CI 0.5 2.50 1.3 0.04 0.14 0.2 0.3 0.05 5.1 

NF2+Ar 1700 0.70 1.1 0.89 0.02 2.0 19.4 -0.05 8.5 
NF+F 0.3 0.83 0.4 0.25 0.01 0.7 0.3 0.05 4.8 

NOs+Ar 1900 0.90 1.4 0.71 0.05 1.8 18.9 -0.05 9.4 
NO+O 0.4 1.44 0.7 0.12 0.04 0.4 0.2 0.03 5.1 

CF.+Ar 3300 0.45 0.7 1.32 0.01 2.3 16.1 -0.06 7.7 
CF+F 0.04 0.57 0.3 0.36 0.00 0.7 0.1 0.01 6.2 

H.O+Ar 4500 0.89 1.4 0.71 0.05 1.8 13.0 -0.09 8.6 
OH+H 0.2 1.19 0.6 0.16 0.03 0.5 0.1 0.01 7.9 

S02+Ar 6000 0.22 0.4 1.94 0.00 2.6 10.9 -0.10 9.2 
80+0 1.0 0.27 0.1 0.62 0.00 0.9 0.4 0.07 8.5 

BrCN+Ar 3300 0.24 0.8 2.60 0.01 3.3 12.6 -0.10 7.6 
CN+Br 0.03 0.90 0.5 0.23 0.01 0.6 0.5 0.09 5.7 

CICN+Ar 2600 0.40 1.1 2.00 0.03 3.1 17.8 -0.06 8.2 
CN+CI 0.1 1.20 0.6 0.16 0.03 0.5 1.2 0.15 4.0 

NO.CI+Ar 460 2.31 8.1 0.41 0.93 1.7 32.0 -0.05 7.2 
N02+CI 0.005 3.72 5.9 0.05 0.80 0.3 0.2 0.03 -0.2 

H.0s+N2 800 2.60 9.9 0.42 1.39 1.5 31.2 -0.05 9.7 
OH+OH 0.1 6.73 6.7 0.00 1.06 0.0 1.4 0.18 -0.7 

NHa+Ar 2500 1.29 4.4 0.95 0.25 2.8 18.4 -0.10 9.6 
NH+H, 1.0 2.19 2.2 0.12 0.16 0.6 1.8 0.25 4.9 

(CNh+Ar 2600 0.37 1.9 3.75 0.05 5.3 24.0 -0.09 8.3 
CN+CN 0.1 1.14 1.1 0.32 0.04 1.1 1.9 0.30 3.5 

CHFa+Ar 1800 0.84 4.4 2.38 0.22 5.5 19.5 -0.14 8.8 
CF2+HF 0.4 1.19 3.0 0.77 0.20 2.0 3.1 0.35 5.5 

CH.+Ar 1600 1. 77 8.6 0.86 0.65 3.3 31.6 -0.10 10.1 
CH2+H 1.0 0.60 5.3 0.69 0.37 2.4 4.6 0.49 0.8 

CF.+Ar 2700 0.41 2.0 4.32 0.01 7.1 22.6 -0.12 8.9 
CFa+F 0.4 0.43 1.4 2.80 0.02 4.7 4.5 0.39 4.9 

N.0.+N2 270 3.20 26.4 1.04 4.50 2.4 23.5 -0.15 13.3 
NOs+NO. 1.0 6.37 20.1 0.02 3.83 0.2 2.0 0.20 4.3 

NsF.+Ns 380 2.28 15.8 0.95 1.55 3.1 26.0 -0.14 10.5 
NFs+NFs 1.0 3.15 9.8 0.16 1.13 0.9 1.7 0.18 4.4 

N.H.+Ar 1400 1.59 11.3 1.54 0.94 4.8 20.7 -0.18 10.5 
NHs+NHs 1.0 2.71 8.7 0.24 0.91 1.2 6.5 0.71 5.0 

CsF.+Ar 1400 0.65 4.8 4.24 0.17 8.2 26.8 -0.14 9.2 
CF,+CF, 0.3 1.12 3.4 1.12 0.14 3.2 7.5 0.76 3.5 

CsH.+Ne 1400 1.18 8.1 2.15 0.48 6.1 18.9 -0.20 8.9 

CJ!.+Hs 0.1 1.10 6.0 1.80 0.43 4.0 6.5 0.55 4.1 
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TABLE III. Comparison of experimental observations for mean conditions with theoretical calculations based on parameters in 
Tables I and II. m is the order of the reaction wlth respect to the catalyst, EA is the apparent activation energy, and k is the first-order 
dissociation rate constant. Omissions of fIfobo correspond to cases where the order was not determined experimentally. Omissions of 
(D- EA)obo correspond to cases where a double bond is broken and D was taken to be EAobo+ (D- EA ) theoret. 

Reactants T mtheo_ (D- EA ) ,boor., logitbooh' 

Products p/pe m..bo (D-EA)obo logkobo Ref. 

(OK) (kcal) (sec-I) 

o.+Ar 800 1.0 1.6 3.6 8 
~+O 0.2 .....,1 1.1 3.4 9 

NOCl+Ar UOO 1.0 4 3.8 10 
NO+Cl 0.5 6 3.9 

NF.+Ar 1700 1.0 8 3.2 11 
NF+F 0.3 14 3.3 12 

NOz+Ar 1900 1.0 8 3.8 13 
NO+O 0.4 7 3.9 

CF.+Ar 3300 1.0 17 3.5 14 
CF+F 0.04 16 3.8 

HsO+Ar 4500 1.0 19 5.1 15 
OH+H 0.2 12 4.6 

SO.+Ar 6000 1.0 31 6.6 16 
SO+O 1.0 "-'I 21 6.1 

BrCN+Ar 3300 0.8 20 4.5 17 
CN+Br 0.03 "-'I -7 2.3 

ClCN+Ar 2600 0.7 14 3.2 18 
CN+Cl 0.01 13 3.5 

N02Cl+Ar 460 1.0 1.8 -3.2 19 
NOa+Cl 0.005 "-'I 2.0 -3.7 20 

H20 2+Nf 800 0.8 2 -1.2 21 
OH+OH 0.1 "-'I 5 -0.7 

NHa+Ar 2500 0.7 12 4.2 22 
NH+H, 1.0 .....,1 4.4 23 

(CNh+Ar 2600 0.6 22 2.8 18 
CN+CN 0.1 25 3.3 24 

CHFa+Ar 1800 0.6 18 4.6 25 
CF.+HF 0.4 0.6 4.3 

CH,+Ar 1600 0.4 0 0.5 26 
CHa+H 1.0 -1 0.6 

CF,+Ar 2700 0.5 25 4.1 27 
CFa+F 0.4 24 3.9 

N,O,+N, 270 0.7 1.0 3.5 28 
NOa+No. 1.0 0.7 1.7 4.0 

N2F,+N, 380 0.7 2 3.3 29 
NF.+NF2 1.0 0.5 2 3.7 

NtH.+Ar 1400 0.3 8 4.8 23 
NH,+NHs 1.0 0.3 8 4.7 

C,F,+Ar 1400 0.3 12 3.3 30 
CF2+CF, 0.3 18 3.7 

CtH.+Ne 1900 0.5 22 3.8 31 
C~2+H. 0.1 0.5 3.5 
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N=IO.5 N=13.5 

14 Nzo.. 
15 NzF4 
16 NZH4 

17 CZF4 
18 CZH4 

FIG. 4. Correlation of experimentally observed first-order 
dissociation rate constants with theoretical predictions based 
on Eq. (5.12) and molecular parameters given in Tables I and II. 
Note kO=l'ca{3.-y. 

and Eq. (5.20a) to determine kd • For five- and six-atom 
molecules the values of .6. and kd/koo were determined 
from the curves in Figs. 1 and 2, which were calculated 
from (5.9) and (5.12b) using an IBM 650. 

The locations of the various experiments8-81 in the 
(8u , .6.) plane are shown in Fig. 3 and it can be seen that 
most of them fall in the low-pressure quantum region. 
There is one case, CF4, which falls in the classical region 
and three, CH4, NJI4, and C2F4, which fall in the litigh­
pressure region. 

The theory and experiments are compared in Table 
III and Figs. 4 and 5. The calculations for Table III 
and Fig. 4 are based on the parameters in Tables I and 
II. The curves in Fig. 5 have been adjusted to give a 
best fit with the data25 and correspond to values of 
ulA=1XlO-16 cm2 and U28=8X1O-19 cm2 which are 
reasonable. 

Considering the range of condition spanned, the 
difficulty of the experiments and the sensitivity of the 
calculation to the value of D, the over-all correlation 
is quite good. The only really exceptional case is BrCN17 
which is far out of line both with the theory and the 
experiments on ClCN18 to which it should be similar. 
This may be due to the assumption made in the analysis 
of the experimental data that the excited state of CN 
was in equilibrium with the ground state. 

It should also be mentioned in connection with our 
interpretation of the dissociation of C2H4 as a simple 
unimolecular decomposition, that Gay et al.81 were 
concerned about the rapid appearance of HD as a 

product in their experiments with CJI4+C~4 mixtures. 
A possible explanation of this which they do not discuss 
would be exchange reactions of the type CJI4+ D2--7 
CJIaD+HD and C2D4+H2--7C2DaH+HD following 
the dissociation reactions. 

VII. SUMMARY AND CONCLUSIONS 

Using the theory developed in this paper we have 
been able to obtain a reasonable fit to the experimental 
dissociation rate constants for 20 out of 21 moderately 
complex molecules containing from three to six atoms. 
The data cover the pressure range from low- to high­
pressure limits and the temperature range from 250°-
7500oK. The observed rate constants span 10 orders of 
magnitude. Examples of both classical and quantum­
mechanical reactions are included. 

For reactions involving only the breaking of a single 
bond the activation energy was taken equal to the 
dissociation energy and the fit was made using two 
adjustable parameters, the energy exchange cross 
section and the spontaneous decay cross section. For 
reactions involving the breaking of two bonds and the 
formation of a new one it was also necessary to fit the 
activation energy since it is no longer reasonable to 
assume it equal to the dissociation energy. 

In all 20 cases where a fit was obtained, the observed 
temperature and pressure dependences were given 
within the estimated experimental uncertainties and 
the rate constant was given within a factor of "'3. 
Values of the cross sections and activation energies 

CHF3 +Ar--- Cf2 +HF'" Ar 

lOS 

I 
u I 
'" I <II 

.0 

° x 
10

4 

10 

PIPo 

FIG. 5. Correlation of Modica's first-order rate constants for 
the dissociation of CHF. in Ar with theoretical predictions based 
on Eq. (5.12). The curves were fit to the data using values of 
01A=10F16 em! and U23=8X10-19 cm2• 
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obtained were in reasonable agreement with a priori 
expectations. The only molecule for which the theory 
failed badly was BrCN but there is reason to suppose 
that the experiments may be in error in this case. 

We conclude that the theory provides a reasonable 
method for correlating and extrapolating experimental 
results for the dissociation rate of moderately complex 
molecules over the entire range between low- and 
high-pressure limits and that it may even be useful for 
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predicting rate constants in cases where the activation 
energy can be estimated or set equal to the dissociation 
energy as is reasonable when only a single bond is 
broken. 

Possible refinements of the theory which could be 
considered include the introduction of the angular 
momentum constraint and the inclusion of an adia­
baticity factor to reduce the probability of large energy 
transfers. 
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Results of calculations of spin- and charge-density functions are presented for some small r-electron 
systems, using a configuration-interaction procedure which applies equally well to both molecular-orbital 
and valence-bond approximation methods, and thus provides a direct comparison of the two methods. 

1. INTRODUCTION 

The Igeneral configuration-interaction (CI) proce­
dure described elsewhere1 (hereafter Part I) is used in 
the present paper to obtain charge and spin densities for 
some small r-electron systems, and to compare the 
convergence of the CI expansions based on molecular 
orbitals (MO method) and atomic orbitals [AO's, as 
in the valence-bond (VB) method]. Earlier calculations 
of this kind, but not including the spin density, have 
been reported elsewhere.2 The charge- and spin-density 
functions3 are 

Pt(r; r') = 1: cPI],."a(r) b*(r') , (Ll) 
a,b 

DB(r; r') = 1: [DB],."a(r) b* (r') , (1.2) 
a,b 

and reduce to the charge density and (McConne1l4) spin 
density, respectively, for r' = r. 

The summations are over the set of basis orbitals 
2':= {a, b, c,···} which will normally be assumed ortho-
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normal; orthonormalized AO's can be obtained from 
ordinary Slater AO's, 2':' = { a', b', c',' .. } by the Lowdin 
prescription, 

2':= 2':'S-I/2, (1.3) 

where S is the overlap matrix with elements Sab= 
(a' I b'). The density matrix elements in P t and DB then 
allow us to estimate the charge and spin populations of 
the orbital and overlap regions defined by the basis. 
Matrices for the different bases are related by 

PI' = S-1I2P1S-l/2, 

D.' = S-I/2DBS-l/2, (1.4) 

and will be determined for a variety of approximate 
wavefunctions, and for singlet, doublet, and triplet 
states, using both MO and VB methods. 

II. Method 

The CI wavefunction is 

'l'(Xl, X2,' ", XN) = 1: C.'l'.(XI, X2,", XN), (2.1) 

where 

'l'.(Xl,"·, XN) = (2m .jN!)+1/2 1: (-1)P' 
<P' 
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