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estimate.
The quenching effect of an external electric

field was investigated by introducing a field
over a 1-cm length of beam path in front of the
detector. The Stark quenching observed in
rubidium is shown in Fig. 4(b). A smaller ef-
fect was observed in potassium, and none in

lithium. Since the electric field mixes the met-
astable state with neighboring states of opposite
parity, same spin, and total J differing by 0 or
+1, one might expect a significant decrease in
the lifetime of metastable atoms if the neighbor-
ing states satisfying these selection rules are
shorter lived. Examples of such neighboring
states are (4p Ss4f) G~im», in Rb and (Is2p ) P~,~

in Li. Wu and Shen have estimated that the en-
ergy separation between the (Is2p ) 4P~, ~ and

(Is2s2p) 4Ps, ~ states in Li is 3.43 eV. This
large separation probably accounts for the ab-
sence of an observable quenching effect at the
highest field attainable in our apparatus (150000
V/cm). In K and Rb the neighboring short-lived
states are probably much closer to the meta-
stable state.

Further experiments employing the techniques
of resonance spectroscopy and magnetic deflec-
tion are necessary for complete identification of
the observed states, and are in progress in our
laboratory. It is also desirable to extend the
work of Beutler to shorter wavelengths so that
the energies of the excited-core doublet states

in lithium and sodium can be determined.
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The rate of three-body electron-ion recombina-
tion

is calculated from a classical variational theory,
which has proved successful in determining atomic
recombination rates in the presence of repulsive
third bodies. The above mechanism, in which
an electron acts as a third body removing the re-
combination energy, is known to be important at

high electron densities and low temperatures
when radiative transitions are unimportant.

A classical solution may be justified only when
the deBroglie wavelength is smaller than the
characteristic range of the interaction. The ap-
propriate range here is Thomson's radius, ' 2e'/
3AT, at which the potential energy of the recom-
bining pair is equal to the kinetic energy, and
inside which two ions have a high probability of
recombining. Based on this dimension a classical
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solution is valid for temperatures below about
11000'K.

In the theory the motion of the three bodies is
described by a representative point in an 18-di-
mensional phase space. If a "trial" surface is
chosen in this hyperspace separating the free and
bound states, then an upper bound to the rate may
be obtained by calculating the rate at which rep-
resentative points cross this surface in one direc-
tion. The surface chosen for the present calcula-
tion is defined by the condition that the relative
energy of the recombining electron-ion pair be
-E with respect to the dissociation limit. It is
shown schematically in Fig. 1 along with a dia-
gram of the three-particle system. The rate at
which representative points cross the "trial"
surface is~

ft= Jp~ v ndo (1)

where v n is the normal velocity with respect to
an element of "trial" surface do, H is the total
Hamiltonian, and po is a constant. In the center-
of-mass system, the flux integral is 11-dimension-
al and the integration may be carried out keeping

Ec
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=E /kT as an undetermined parameter .Cou-
lomb potential fields are assumed between each
pair of particles, and the three-body potential
is assumed to be the sum of two-body potentials.
An upper bound to the three-body recombination
rate is then

R =n.n 2m~' (8kT/vm)"2r ~exp(e )I'(g ), (2)i e C C

where

x e,'"despzs'dp, mp, ~ dp, ~d cose d cosy (3)

T /kT' p13 13/ T p23 "23/ T p12
= r12/rT, e3 =mv 3'/2kT, v3 is the velocity of
particle 3, and u, = 1/p»- 1/p» is the sum of the
potentials between particle pairs 1-3 and 2-3
divided by kT. Other symbols are defined in
Fig. 1. The integration of Eq. (3) is to be car-
ried out subject to the conditions v n~ 0, H»
=-Fc, and H»~ -Ec, where Hg2 alld Hg3 are the
relative energies of the two electrons with respect
to the ion. The last condition is imposed to in-
sure that one electron has not already crossed the
"trial" surface and hence recombined with the ion.

As it stands, the integral in Eq. (3) diverges
linearly in p,~. Such divergences are well known
with Coulomb potentials and are the result of
many long-range "soft" collisions. The "trial"
surface may be crossed many times by a single
point during such collisions resulting in a gross
overestimate of the net recombination rate. How-
ever, in collisions of this type, no energy is
transferred between the particles and recombi. —

na, tion will not occur. Bohrl showed- that when
the product of the collision time v and the angular
frequency of a bound electron around its parent
nucleus ~ is greater than unity, the collision is
adiabatic and no energy will be transferred.
Since we are only interested in those collisions
where energy is transferred, we may limit the
integral in Eq. (3) to the region where &uT & 1.
The integration may then be carried out approx-
imately and the result expressed in the form

f'(e ) =(3/64K)[8exp(~&e )+1]c
C C C

(4)

FIG. I. Schematic diagram showing location of
trial surface separating free and bound

' states
of an electron-ion pair and geometry of the three-
body collision.
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g = 2. 3 x10 'Z-o~'pg ~ '
z 8 (5)

Equation (4) may now be minimized with re-
spect to e to obtain a least upper bound for the
recombination rate When e. = 5/2, the rate ex-
pression has a minimum value such that
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FIG. 2. Comparison of present results with those
calculated by Bates for infinite electron density using
Gryzinski s classical transition probabilities. Note
that the extension of either Bates' or the present results
into the quantum mechanical region is of doubtful valid-
ity.

The rate constant k =R/n;nem obtained from
Eq. (5) is shown plotted in Fig. 2 in compari-
son with the calculations of Bates, Kingston, and
McWhirter for the case in which collisional de-
excitation is the dominant mechanism. Bates
has considered the problem from the point of
view of cascading between levels using transi-
tion probabilities obtained by Gryzinski from
a classical treatment of an equivalent two-body
problem.

A physical explanation of the minimum, or
"bottleneck, " in the rate has been previously
given by Byron, Stabler, and Bortz~ whose cal-
culations are also based on Gryzinski's transi-
tion probabilities and agree with Bates. It is
the result of a decreasing equilibrium density
exp(ec) as the principal quantum number in-
creases, combined with an increasing probabili-
ty of collisional de-excitation I'(ec). In the phase-
space calculation both of these effects have been
automatically included in the rate expression.

The existence of the "bottleneck" has been veri-

fied experimentally by Hinnov and Hirschberg. '
They measured the population of states in a re-
combining helium plasma and noticed that at a
depth of (5/2)kT from the continuum, the popula-
tion density began to fall off sharply from a value
in equilibrium with the free electrons.

An important effect taken into account in the
present calculation which is neglected in Gryzin-
ski's work is the influence of the ionic charge on
the motion of the "third-body" electron. The
magnitude of this effect may be judged from the
fact that at the "bottleneck" over 80@of the cal-
culated recombination rate comes from the region
in which the net interaction with the "third-body"
electron is attractive. A further improvement
is in the treatment of "adiabatic" collisions which
Gryzinski eliminated by an arbitrary averaging
procedure.

In concluding we should like to point out that
although the theory presented here does not give
results which are startlingly different from those
of Bates and Byron, they were obtained in a some-
what simpler and more direct manner which is
capable of giving an insight into the specifically
three-body effects and can be subject to syste-
matic improvement.
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