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The time evolution of a non equilibrium ensemble of gas atoms adsorbed on a solid surface is described. 
Adsorption and desorption rate constants and adatom (adsorbed atom) energy distributions are obtained in 
the steady state approximation from the appropriate master equation or an equivalent diffusion equation. 
Energy transition probabilities are obtained from a classical gas-surface collision model using an interaction 
potential composed of an oscillating harmonic repUlsion and a stationary attraction. Calculations have been 
performed over the following range of similarity parameters: inertia ratio 10-2<)l= mg / m, <2, frequency 
ratio 1 < v = w, / W g < 10, and well depth 2 < a = D / kT < 100. For "resonance" values of the frequency 
ratio, gas-surface collisions are sufficiently adiabatic that adatom energy distributions are significantly 
nonequilibrium, and steady state rate constants are depressed below the equilibrium rate constants. 
Applications include prediction of adsorption and desorption rate constants, sticking and accommodation 
coefficients, sublimation and condensation rates, and boundary conditions for the Knudsen layer. 

1. INTRODUCTION 

This investigation concerns the evolution of a system 
of gas atoms adsorbed on a solid surface when that 
system is thrown out of equilibrium. A fundamental 
physical understanding of the nonequilibrium phe­
nomena at such a surface is needed to delineate im­
portant similarity parameters and provide guidelines 
for definitive experiments in surface studies. Consider, 
as an initial problem statement, an ensemble of gas 
atoms in equilibrium with a solid surface at temper­
ature T enclosed in a sealed container. The enclosure 
is instantaneously evacuated at 1= O. The problem is to 
determine the time history of the surface concentration 
and the adatom (adsorbed atom) energy distribution. 
Experiments show that over a wide range of conditions 
the desorption process proceeds according to a first­
order rate equation: 

dA (I) /dl= kaF(/) -kdA (I), (1) 

where A is the surface concentration (cm-2), F is the 
gas concentration (cm-3), and ka and kd are the adsorp­
tion and desorption rate constants. A satisfactory quan­
titative understanding of temperature and atomic 
species dependence of the rate constants ka and kd is 
sought. This analysis is the first attempt the authors 
are aware of to describe the functional dependence of 
ka and kd using non equilibrium kinetics. An equilibrium 
approach,! which assumes a Boltzmann distribution for 
the ada tom energy distribution and that all atoms which 
strike the surface adsorb, gives the classical desorption 
rate constant 

kdc= (wg/27r) exp( -D/kT) , (2) 

Trilling22 and Kogan.23 Of particular interest in con­
nection with the present investigation is the work of 
Armand2-9 who has made careful studies of the effect 
of lattice interactions on the desorption process and 
Logan and Keck18 who have developed a relatively 
simple "soft cube" model for scattering of gas atoms by 
surfaces. Also of interest is the analogous gas-phase 
problem of molecular dissociation and recombina­
tion,24-31 and a review of this literature has been pub­
lished by Bunker.32 The theory developed in this paper 
is based on this analogy and parallels the work of Keck 
Carrier27 and Keck.23 

Applications of the theory include prediction and 
correlation of adsorption and desorption lifetimes, ac­
commodation and sticking coefficients, sublimation and 
condensation rates, and scattering patterns. In addi­
tion, potential parameters for gas-surface interactions 
may be deduced from a comparison of the theoretical 
results with experimental data33- 39 obtained using modu­
lated beam and flash desorption techniques. 

A general discussion of the theoretical model and the 
governing master equation used to obtain rate con­
stants is given in the following section. The mechanism 
of the gas-surface collisions and the dimensionless pa­
rameters characterizing the problem are discussed in 
Sec. III. The transition kernel appearing in the master 
equation and the steady state adsorption and desorp­
tion rate constants are derived in Sec. IV. Finally, a 
brief summary and conclusions are given in the last 
section. 

II. MATHEMATICAL MODEL 

A. Qualitative Discussion 
where Wg is a characteristic frequency, D is the potential 
energy well depth, and T is the surface temperature. Consider first a single gas atom approaching the 
The statistical description given here approaches this solid surface from the free state with a nondimensional 
equilibrium expression as a limiting case. energy E= E/kT as shown in Fig. 1, where r is the atom 

Many previous investigations of the interactions of displacement from the surface. Far from the surface, 
gas atoms at surfaces have been reported,2-21 and ex- the free atom feels an attractive van der Waals force 
cellent reviews of this work may be found in articles by represented as a potential with a positive gradient in-
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creasing as the separation distance decreases. In the 
immediate vicinity of the surface, the gas atom en­
counters a repulsive valence force represented by a po­
tential with a negative gradient that approaches in­
finity as the separation distance goes to zero. At finite 
separation distances these two potentials overlap to 
form a potential energy well which defines the collision 
mechanics. For the collision shown, the atom's energy 
after collision, e', is less than the well depth, and the 
atom is trapped on the surface. 

The distinctive feature of the collision between a free 
atom and a lattice atom is that the "inner" potential 
oscillates while the "outer" potential is stationary. The 
stationary outer potential results from averaging over 
pairwise potentials between the gas atom and several 
lattice atoms which, at large separation distances, are 
equidistant from the gas atom and hence have an equal 
influence on it. The oscillations of the repulsive potential 
are not eliminated by averaging, since at small separa­
tion distances one lattice atom dominates the repulsion. 

Now consider an ensemble of adatoms trapped on 
the surface. The array of surface atoms is modeled as 
a set of independent simple harmonic oscillators and 
may be visualized as a "simple harmonic chess board" 
in which each square oscillates perpendicular to the 
plane of the board with a frequency approximated by a 
surface Debye temperature and with an amplitude 
probability specified by a Boltzmann energy distribu­
tion at the temperature of the solid. The well depth, 
which is a function of both time and position on the 
surface, is approximated by a constant. This approxi­
mation is possible since all important energy levels are 
near the top of the well. A free atom at rest an infinite 
distance from the surface is assigned an energy equal to 
the nondimensional well depth fJ= D/kT, placing the 
zero of energy at the bottom of the well. The ada tom 
energy distribution can be found from a kinetic master 
equation once energy transition probabilities are ob­
tained from a gas--surface collision model. This is equiv­
alent to treating the movement of adatoms among the 
energy levels of the potential well as a random walk 
process. Adatom energy transitions are statistically in­
dependent since the relaxation time of a struck lattice 
atom, T r, and the collision duration, T e, are less than the 
period, TO, of the ada tom oscillation in the gas-surface 
potential well. The kinetic equation used here only 
accounts for ada tom-surface collision induced energy 
transitions, thus this analysis is restricted to low sur­
face concentrations. 

The desorption. relaxation process has three distinct 
time scales. Initially there is a transient regime of the 
order of the characteristic ada tom oscillation time TO 
during which there is negligible desorption. During' th~ 
transient, the ada tom energy distribution relaxes to 
a steady state form which is the asymptotic energy 
distribution as t/TO~OO. The second time regime is 
characterized by the mean desorption lifetime Td= krl. 
Since Td is of the order of TO exp(D/kT) and the well 
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FIG. 1. Gas-surface potential well formed by superposition of 
dynamic repulsive and static attractive potentials. 

depth is large compared to kT, Td»TO. This difference 
in time scales allows the steady state distribution to be 
used during the entire second time regime while all 
significant desorption takes place. The third regime is 
the equilibrium condition at t/T~OO. Here the adsorb­
ing flux equals the desorbing flux. It is the second time 
regime which will be examined in detail to determine the 
temperature and atomic species dependence of the rate 
constants. 

B. Master Equation 

Assuming that the state of an adatom is specified 
by its energy, the kinetic master equation for the re­
duced ada tom energy population X (E, t) can be written: 

N.(E) ~ X(E, t) = /8 R(E, e') [X(e', t) -X(E, t)]dE' 
at 0 

+R(E,f)[H(E, t)-X(e, t)], (3) 
where 

X(e, t) =~V(E, t)/N.(E) (4) 

is the ratio of the actual energy distribution N (E, t) of 
adsorbed atoms to an equilibrium distribution, N.(E) = 
(N /Q)e--(dfJ/dE), at the surface temperature T, N is 
the number of atoms in that region of phase space for 
which the partition is Q, dfJ/ dE is the energy level den­
sity per unit E, E= E/kT is the nondimensional adatom 
energy, 8= D/kT is the nondimensional well depth, 
R(E, E')dEde' is the one-way equilibrium transition rate 
from an energy band dE at E to an energy band dE' at E', 

R(E,f)de= 1a~ R(E, E')dE'de (5) 

is the one-way equilibrium desorption rate from an 
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energy band de at e to the free state, and H(e, t) is the 
ratio of the actual one-way adsorption rate to the equi­
librium one-way adsorption rate, R(f, e). Note that by 
detailed balancing, we have 

R(e,e')=R(e',e) and R(j,e)=R(e,f). (6) 

X(e, t) is a useful measure of non equilibrium since 
it is unity at equilibrium. X(e, t»1 indicates over 
population of the energy level e, and X (e, t) < 1 indicates 
depletion of the level e. The master equation simply 
states that the adatoms leave the energy level e either 
by making transitions to the level e' at a rate R(e, e') 
X (e, t) or by desorbing to the free state at a rate R (e,j) 
X(e, t) and enter the energy level e either by making 
transitions from the level e' at a rate R(e', e) X(e', t) 
or by adsorbing from the free state at a rate R(f, e) 
H(e, t). 

The form of Eq. (3) results from the following as­
sumptions: 

(1) The adatom concentration is sufficiently small 
that collisions between adatoms may be neglected. If 
an equivalent Knudsen number Kn, is defined as the 
ratio of the adatom-surface collision rate to the adatom­
adatH)m collision rate, this assumption is valid when 
Kn»1. The adatom-surface collision rate is the in­
verse period of oscillation in the well ,....,1013 secl. The 
adatom-adatom collision rate is ucA where A is the 
surface concentration, u the collision diameter ,....,10-8 

cm, and the mean speed c= (7rkT/2mg )l12,....,105 cm 
sec.-l The effective Knudsen number is then Kn= 
To-l(ucA) = lOl6A-l and assumption 1 is valid if A«1016 
cm-2• 

(2) A classical approach is valid. Keck and Carrier27 

have shown that quantum models fail when the average 
energy transfer per collision is greater than the energy 
level spacing at the rate-limiting step in the well. For 
the transition rate derived here, the "bottleneck" is at 
the top of the well where the energy level density is 
high, and the quantum number is large. For very 
shallow well depths, 5'"'-'1, this approximation is not 
valid. 

(3) The nonequilibrium transition probability is 
equal to the equilibrium transition probability. This 
assumption is always valid since the collision mechanics 
are determined by the temperature of the solid and the 
atomic parameters of the gas and solid and are inde­
pendent of the energy distribution of the adsorbed 
ensemble. 

c. Steady State Solutions 

To solve Eq. (3) we now introduce the steady state 
approximation by setting the time derivative on the 
right-hand side equal to zero. This gives 

{ R(e, e')[X(e', t)-X(e, t)Jde' 
o 

+R(e,j) [H(e, t)-X(e, t)J=O. (7) 

The form of Eq. (7) indicates that energy and time 
variables will separate if it is assumed that a steady 
state reduced population, X (e), exists such that 

X (e)f(t) = X(e, t) - H (e, t), (8) 

where f(t) gives the time dependence of the adsorbed 
population. If the energy distribution in the free gas 
is steady, H(e, t) may also be separated as H(e) F(t) IF., 
where F(t) is the time-dependent free gas concentra­
tion, and H (e) is the ratio of the adsorption rate at an 
energy level e from the actual incident distribution to 
the rate from an equilibrium distribution. In terms of 
the equilibrium transition rate R (e', e) and a time­
independent incident atom energy distribution Xg(e') = 

F.Ng(e', t)IF(t)Ne(e'). 

H(e) = {'" R(e', ehg(l)de'l R(j, e). (9) 

H(e) is unity when the incident energy distribution is 
Boltzmann about the temperature of the solid so that 
Xg(e') = 1. 

An integral equation for X (e) is obtained by sub­
stituting Eq. (8) into Eq. (7) and assuming aHlae« 
(t)dx/de. This gives 

[ R(e, e') [X (e') -x(e) Jde'+ R(e,fh(e) = O. (10) 
o 

The condition aHlae<<j(t)dxlde is generally satisfied 
since near the top of the well the gradient of x(e) is 
large due to depletion of the upper energy levels by 
desorbing adatoms, and H(e) does not have a large 
gradient at any energy. The steady state population, 
x(e), is obtained from a iteration solution to Eq. (10) 
or by conversion of Eq. (10) to an equivalent diffusion 
equation.27 

The surface concentration is given by 

A (t) = { X(e, t)Ne(e) de, 
o 

(11) 

where X(e, t) is obtained in the steady state approxima­
tion by assuming X(e, t) is separable, and setting 
x(O) = 1 in Eq. (8). This gives 

X(e, t) = X(O, t)x(e) +[H(e) -H(Oh(e) JF(t) IF •. 

(12) 

Since N.(e) is a rapidly decreasing function of e, sub­
stituting Eq. (12) into Eq. (11) with H(e) slowly 
varying and x(e)~1 near e=O gives 

A(t)~X(O, t) { N.(e)de=X(O, t)A.. (13) 
o 

The rate constants are obtained as functions of transi­
tion rates, R( f, e), and the steady state reduced popu­
lation, x(e), from the energy integral of the master 
equation. Integrating the original master equation (3) 
over energy using Eqs. (9) and (13) yields the phe-
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nomenological equation 

dA (t) I dt= kaF (t) - kdA (t), 

where the rate constants have the form 

k
a
=j3 R(j, E)x(E) dE 

o F. 
and 

kd=j3 R(j, E)x(e) dE 

o A. 

(14) 

(1S) 

(16) 

if H(E) is unity. These are the steady state rate con­
stants. The equilibrium rate constants are given by 
setting X(E) = 1 in Eqs. (15) and (16). It is seen from 
these equations that the ratio of the forward to back­
ward rates in both the steady state and equilibrium 
case is equal to the equilibrium constant: 

Ke= Fel Ae=kdelkae=kdlka (17) 

where Ke is the equilibrium constant, kde is the equilib­
rium desorption rate constant, and kae is the equilibrium 
adsorption rate constant. When H(E) is not unity, 
i.e., an incident gas stream exists which does not have 
a Boltzmann distribution about the temperature of the 
solid, the ratio of the forward to backward rate con­
stants is equal to the ratio of the equilibrium con­
stant to H(O), 

(18) 

The factor H(O) takes into account the dependence of 
the adsorption rate constant on the energy distribution 
of the incident atoms. In this case, the energy integral 
of the original master equation with Eqs. (12), (13), 
and (14) gives the adsorption rate constant as 

18 H(O) 
ka= R(J, E)x(E)dE'--. 

o Fe 
(19) 

Since the desorption rate constant is unaffected by the 
incident atom energy distribution, it remains un­
changed and is given by Eq. (16). 

III. COLLISION MECHANICS 

A. Equations of Motion 

The mechanics of a single collision between a gas 
atom and a surface atom must be described in detail 
to obtain the energy transition probability, R(Ef, E). 
The colIision model used is similar to the soft cube 
model of Logan and Keck,18 with an oscillating half 
harmonic repulsion replacing the oscillating exponential 
repulsion since lower incident energies are of interest. 
It is assumed that: 

(1) Tangential momentum is conserved, i.e., the 
solid surface is flat. This is not true since the crystal 
structure produces a rough surface on the atomic scale. 
However, the roughness seen by an incident atom is 
energy dependent,t6 and at incident energies < Ii the 

-e 
mg 

o 
r = y - z 

FIG. 2. Collision model. Attractive potential is an arbitrary 
shape of height a at fixed position several lattice spacings from 
the surface. Repulsive quadratic potential follows the surface 
oscillator motion. 

adatom, remaining relatively far outside the crystal 
structure, would see an approximately flat surface. 
Experimental data on out-of-plane scattering and the 
success of the softl8 and hardl7 cube models in predicting 
scattering patterns40 support this assumption. 

(2) The surface atoms are independent simple har­
monic oscillators with a single characteristic frequency 
obtained by approximating the lattice frequency spec­
trum with a delta function at the Debye frequency. 
Decoupling the surface array into independent oscilla­
tors has been shown to have small effect on the energy 
exchange process.18 .19 It is also assumed that only a 
single surface atom is involved in any given collision. 
It has been shown that most of the load for most of the 
collisions is taken by a single surface atom.IS When the 
adatom velocity parallel to the surface is so large that 
the distance traveled during a collision is greater than 
the lattice space, this one-on-one approximation fails. 

(3) The gas-surface potential consists of a stationary 
arbitrarily shaped attraction and an oscillating quad­
ratic repulsion. The motivation for this assumption is 
discussed in the introduction. The interaction is de­
scribed classically and would not strictly apply to in­
cident atoms whose DeBroglie wavelength is of the 
order of the lattice spacing or to solid temperatures 
below the surface Debye temperature. 

The model interaction potential is illustrated in 
Fig. 2. The inner half (r<O) is an harmonic repulsion 
while the outer half (r>O) is a static barrier of height, 
Ii. yet) and Z (t) are the gas and surface atom displace­
ments from their respective equilibrium positions which 
are separated by the equilibrium extension of the gas­
surface "spring." ks and kg are the lattice and gas­
surface spring constants, ms and mg are the surface and 
gas atom masses, and ;; is the desorption energy di­
vided by kT. The time origin marks the initiation of a 
collision. For t<O, the gas atom is force free, and the 
surface oscillator is in simple harmonic motion. Thus, 

and 
Z(t) = (V /ws) sin(w8 t+q,) 

yet) = -ut+ (V /ws ) sinq" (20) 
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where u is the incident gas atom velocity in the well, 
Ws is the angular frequency of the surface atom, and 
V and q, are the velocity amplitude and phase of the 
surface atom. The initial conditions are established as 
the gas atom impacts at the end of the gas-surface 
spring. At 1=0, 

YeO) =Z(O) = (V/w.) sinq" 

YeO) = -u; teO) = V cosq,. (21) 

The equations of motion during collision (1)0) are 

mg yet) = -kg[Y(t) -Z(t)], 

m.Z(t) = -k.Z(t) +kg[Y(t) -Z(t)]. (22) 

The collision ends when the gas-surface spring returns 
to its equilibrium extension with the gas atom moving 
away from the surface. For t= Te, 

(23) 

with Y (Te) positive and greater than t (Te). The colli­
sion duration, T e, is the smallest nonzero root of Eq. 
(23). The nondimensional energy transfer Me) is de­
fined as the increase in the gas atom kinetic energy 
during the collision, divided by kT: 

From comparison with experiment, the parametric 
ranges of interest are: 10-2 < J.t < 2, 1<1'<10, and 
2 < 0< 102. In the adiabatic limit, V-HJO, the energy 
transfer goes to zero since the collision duration is large, 
and the incident particle turns around slowly losing no 
energy. In the impulsive or hard cube limit ~, and 
the collision duration goes to zero. Here the adiabacity 
factor which is proportional to exp( -w.Te)~1, and the 
energy transfer is a maximum. 

C. Normal Mode Solutions 

General solutions to the equations of motion during 
collision, Eq. (25), may be written as a linear super­
position of normal modes: 

yet) = L: ajqj(t) and z(t) = L: (Jjq;(t) , (28) 

where j= 1, 2 indexes the two normal modes, qj, of the 
system. The following algebraic equations defining the 
normal mode frequencies are obtained by substitution 
of possible solutions, y=a exp(iwt) and Z= (J exp(iwt) , 
into Eq. (25): 

(l-v2w2)a-{J= 0, 

J.ta- (v2+J.t-v2w2){J=0. (29) 

d(e) =e'-e= (mg/2kT) [Y(Te)L Y(O) 2]. (24) The resulting normal mode frequencies, WI and W2, non­
dimensional with respect to w., are 

B. Similarity Parameters 

Defining w.-1 as a characteristic time and uw.-l as 
a characteristic length, the nondimensional equations 
of motion corresponding to Equations (22) are 

v2jj+ (y-z) =0, 

v2(z+z) -,u (y-z) =0, (25) 

where J.l.= mg/m. is the inertia parameter, v=ws/Wg is 
the frequency parameter, z=Z/uw.-1 is the nondimen­
sional surface atom displacement, y= Y /uw.-l is the 
nondimensional gas atom displacement, and time is 
nondimensionalized with respect to ws-I. The non­
dimensional initial conditions are 

yeO) =z(O) = V., 

yeO) = -1, and z(O) = Ve, (26) 
where 

Ve= V cosq,/u and Vs= V sinq,/u (27) 

are respectively the nondimensional velocity and dis­
placement of the surface atom at impact. One set of 
initial conditions applies to all incident energies since 
the initial gas atom velocity no longer appears explicitly 
in Eqs. (25) and (26). Although the surface oscillator 
frequency is assumed to be given by the bulk Debye 
temperature, w.= keD/ii, any surface oscillator fre­
quency may be used to obtain Wg from the dimension­
less ratio v=w./wg. The original nine variables V, q" 
W s, W g , m., mg , D, T, and u are thus reduced to three 
parameters v, J.t, 0, and two initial conditions Ve and V •. 

W1.2= {(v2+J.t+l)±[(v2+J.t+l)2-4v2]1/2j1/2/4v. (30) 

The amplitude coefficients in Eq. (28) are related by 
{Jj= (1-w2v2)ai. Applying the initial conditions given 
by Eqs. (26) to Eqs. (25) yields the gas atom tra­
jectory 

and the surface atom trajectory 

(l-WI2v2) tV. (1-WI2v2) (1+ Ve-Wz2v2) 
z(t) = - coswlt- (1) 3 .. 2 

1-t -t WI v-

. (1-w22v2)V. 
X Slllw1t+ 1-t 

(1-W22v2) (1 + Ve- WI2v2) . 
X cosw2t+ (1) 2 2 SlllW2t, -r WI W21' 

(32) 

where t=W22/W12. The nondimensional collision duration 
Te is the smallest nonzero root of y(Te) =Z(Te). Using 
Eqs. (31) and (32), the implicit expression for Te is 

cos (WITe+cf>r) = - (I a21/1 al I)t cos (W2Te+¢Z) , (33) 

where a and q, are the amplitudes and phases of the 
normal modes. In terms of the initial conditions and 
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similarity parameters, these are 

\ 0!1\2 = [V.2~j4(1-W2J 
+[ (1 + Vc- v2W22) 2 j 4(1- r) 2wb,4J, 

\ 0!2\2 = [V.2j4(1-r)2J 

+[(1+ Vc-vwI2)2j4(1-r)2wI4wb4J (34) 
and 

<Pl= tan-I[ - (1+ Vc-VW22)jV.W22wlv2J, 

</J2= tan-I[ - (1+ Ve-VW12)jV.W12w2V]. (35) 

Once the collision duration is known, the energy trans­
fer in a collision is obtained directly from 

..:l= E[Y( Tc)L 1J, 
where E=mgu2j2kT. 

D. Collision Duration and Energy Transfer 

(36) 

Contours of constant collision duration and energy 
transfer in initial condition space are given in Figs. 3(a) 
and 3(b). The time contours in Fig. 3(a) are given for 
relatively impulsive parameters, Il= v= 1, while the 
energy contours in Figure 3(b) are for v= 3.16 and 
Il= 0.5. There is a "plateau" in the V., V. plane, sepa­
rated from the remainder of the space by a discontinuity 
along the heavy dashed lines in Figs. 3(a) and 3(b) 
given implicitly by y( Te) = z( Te) and y( Te) = i( Te). This 
discontinuity follows from the definition of Te as the 
smallest nonzero root of a periodic function. The effect 
of higher v is to increase the size of the plateau and the 
range of initial conditions for which adiabatic collisions 
with longer duration occur. The approximately radial, 
straight-line behavior of contours of constant collision 
time in Fig. 3 (a) follows from the definitions of V. and 
Ve. Radial lines in VB' Ve space are roughly lines of 
constant phase angle, <p. Figure 3a illustrates that the 
duration of the collision is largely dependent on the 
phase angle of the surface atoms at impact. Since the 
initial conditions establish the nature of the collision, 
regions in Ve, V. space may be assigned a particular 
type of collision. For Ve< -1, region III in Figs. 3(a) 
and 3 (b), no collisions are possible since the surface 
atom is moving away from the gas atom at t=O. On the 
plateau and for most of the space off the plateau, 
region I in Figs. 3 (a) and 3 (b), the gas atom strikes 
the surface, returns to the well, and rebounds off the 
attractive step before another collision begins. The 
dashed circle in Fig. 3b indicates the region of interest 
in collision initial condition space for calculation of 
steady state adatom energy distributions as determined 
by the equilibrium transition rate described in the next 
section. It shows that only collisions in region I affect 
the steady state reduced populations and rate con­
stants. 

In region II on Figures 3 (a) and 3 (b), the gas atom 
strikes the surface, begins and ends a collision, but 
strikes the surface again before returning to the well 
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FIG. 3. Contours in initial condition space: (a) Contours of 
constant collision times for V=J.I= 1; (b) Contours of constant 
energy transfer for v=3.16 and /L=O.S. Region I has single col­
lisions, and Region II has second collisions. In Region III no 
collisions occur. Heavy dash indicates plateau bounded by a 
discontinuity in T and ~. 

and rebounding off the attractive step. To assess 
whether these "double" collisions occur, the final con­
ditions of the normal mode solution are used to define 
the initial conditions of new trajectories for the time 
t> Te. The gas atom is in free flight, and the surface 
atom motion is approximated by simple harmonic 
oscillation subject to initial conditions given by z( Te) 
and i( Te). Let T= t-Te. Then the gas atom and surface 

Downloaded 07 Dec 2011 to 129.10.124.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1168 P. J. PAGNI AND J. C. KECK 

1.2 

::J..!.o 
0:: 
W 
I-
w .8 
~ 
« 
0:: 
« 
0.. 

« .6 
I-
0:: 
W 
z 

.4 

REGIONll 

FIG. 4. Second collisions are not signi. 
ficant at the incident gas atom energies 
indicated when the system frequency and 
inertia parameters lie in region I on this 
figure. 

REGION I 

.2 

.0 
0 2 

FREQUENCY PARAMETER, 1/ 

atom equations of motion are 

yeT) =Y(Tc)+Y(Tc)T, 

Z(T) =Z(Te ) COST+i(Te ) sinT. (37) 

If Z(T)"=Y(T) for any T>O, a double collision occurs. 
Region II in Fig. 4 defines the values of J.L and v for which 
double collisions occur. It is clear that double collisions 
are not important for most values of the similarity 
parameters except at very low energies. This energy 
dependence derives from the (J.L/f) 1/2 radius of the region 
of interest in Vs, Vc space defined by the 1/ e point of 
the equilibrium transition rate R (l, f). Double colli­
sions may be important for cases where J.L= 1, v~1, and 
~ is small, e.g., the sublimation and condensation of 
rare gases on rare gases.41 

Figure 5 shows sample gas and surface atom tra­
jectories illustrating the various types of collisions. 
N ondimensional displacements are given on the left 
with corresponding velocities on the right. The abscissa 
is nondimensional with respect to ws-l. Figure Sea) 
with v= 3.16 and J.L= 0.5 represents a relatively adiabatic 
collision at Ve= 1 and V8= 0 in region I (single collision) 
on Fig. 3(b). Figure S(b) with V=J.L= 1, Ve=O, and 
V.= 0.2 is on the boundary between region I (single 
collision) and region II (double collision) on Fig. 3(a). 
In this limiting case the initial conditions for Fig. 5 (b) 
are on the collision duration discontinuity in Vc, VB 
space. Figure S(c), with v=J.L=l, Ve=O, and Vs=0.86, 
shows a relatively impulsive double collision in region II 
on Fig. 3(a). 

3 4 

IV. GENERAL SOLUTIONS 

A. Equilibrium Transition Rate 

The fundamental role of the one-way equilibrium 
transition rate, R(l, f)dfdf' is evident from the func­
tional form of the master equation, Eq. (3), and the 
adsorption and desorption rate constants given by 
Eqs. (15) and (16) where R(f, f) is defined in terms 
of R(l, f) by Eq. (5). The one-way differential transi­
tion rate may be expressed as a flux in phase space from 
the state f to the state l3B: 

dR=p(v·n)ds, (38) 

where ds is a differential element of a surface in phase 
space separating the states f and l on which (v·n) >0, 
V is the generalized velocity of a point in phase space, 
n is the unit outward normal to ds, and p(q, p) is the 
density of points representing the state of a system of n 
particles in a 6n dimensional phase space, the ~~es of 
which are the conjugate momentum p and pOSItion q 
coordinates of the particles. 

For the case of a gas-atom, surface-atom collision, 
the only nonignorable coordinates are the momentum 
of the gas atom, Po, the momentum of the surface atom 
p., and the position of the surface atom Z. The one~way 
equilibrium transition rate may therefore be w.n~t~n 
in terms of the initial gas atom energy, f, and the Imtial 
velocity and position of the surface atom, Ve and V., 
using Eq. (38): 

R(f, Ve, Vs)dfdVedV,=p(Po, p., Z)(Y -Z)dPgdP8dZ. 

(39) 
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The surface in phase space across which the flux is 
monitored is given by Y - Z = 0 with the condition 
Y-Z<o. 

With the definitions: dpg= dEg/ u, dp. = m.di, and 
Y = -u, Eq. (39) becomes 

R(E, Vc, V.)dEdVcdV. 

= p(Eg, i, Z)m.[1+(i/u)JdEgdidZ. (40) 

Since it is assumed that the gas atom and surface atom 
are independent prior to collision, the phase space 
density in the initial state peE, i, Z) can be separated 
as a product of the gas particle density Po ( Eo) and 
the surface particle density p. (E.) : 

p(Eu, Z, Z) =pg(Eg)p.( E.) 

No exp( - Eg/kT) exp( - E8/kT) 

Qg Q. 
( 41) 

where No is the number of gas atoms, Qo is the gas parti­
tion function, Q.=27rkT/w. is the solid atom partition 

function, and it is assumed that, for the equilibrium 
transition rate calculation, the phase space points have 
a Boltzmann distribution. Substituting Eq. (41) into 
Eq. (40) with Eg= kTf, E.=~m.u2(Vc2+ V.2) , di=udVc, 
and dZ = uw.-1dV. yields 

R(f, Vc, V.)dEdVcdV.= (Ng/Qo)e-·(m.u2/27r) 

X exp[ - (f/,u) (Vc2+ V.2) J(1+ Vc)dEdVcdV.. (42) 

The one-way equilibrium transition rate, nondimen­
sionalized with respect to NgkT/Qg, is then 

CR(f, Vc, V.)dfdVcdV.= (E/7rfJ.) (1+ Vc) 

X exp[- (4,1.1) (V/+ V.2+fJ.) JdEdVcdV., (43) 

where the nondimensional initial gas atom kinetic 
energy E, surface atom velocity Vc, and surface atom 
displacement V. are defined in the previous sections. 

From the definition of the partition function, 

NgkT/Qg=N/kT/Q/=NkT/Q, (44) 
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at 0= 13. 

where the subscript g indicates all gas atoms, the sub­
script f indicates only free atoms, and no subscript 
refers to ada toms. Thus the transition rate given by 
Eq. (43) may be nondimensionalized in a variety of 
ways. In adsorption processes, Eq. (43) is nondimen­
sional with respect to 

NfkT/Qf= tF.(8kT /7rmg )1/2e-6 = t(F,t) e-6, (45) 

where c is the mean speed of the free atoms, and Qf= 
(27rmgkT) 1/2 for gas atoms moving normal to the sur­
face. The transition rate in desorption processes is non­
dimensionalized with respect to 

Nk T/Q = AeWg/27r (46) 

where A. is the equilibrium adatom concentration. 
Equation (43) shows that the one-way equilibrium 

transition rate has a strong maximum in initial condi­
tion (Vc, V.) space. In the limit e ...... HlO , <R (e, Ve, V.) 
resembles a delta function at 

V.=O, 

( 47) 

This behavior is useful in making the variable trans­
formation from <R(e, Ve, V.) to <R(e', e). The energy 
transfer, and therefore the final energy for a given 
initial energy, is given as an implicit but exact function 
of e, Vo, and V. by Eq. (36). This function is plotted in 
Fig. 3(b) for the particular but typical case, 1'=3.16 
and J,L=0.5. It is seen that the surface, (.6./f) (Ve, V.), 
is approximately a plane in the neighborhood of the 
maximum of <R(e, Ve , VB)' The equation of that plane 
is obtained by expanding (.6./e) (Ve , V.) in a two­
dimensional Taylor series about the Vo, VB values given 

by Eq. (47), and truncating the expansion at the linear 
terms. 

(.6./e) (Ve, V.) =a ...... l+bV.+cVe (48) 
where 

a=ii(Te), 

b = 2f1 (Te) flv. (Te), 
and 

c= 2f1( Te) flv.( Te) 

with subscripts indicating differentiation, and Te(O, 0) 
is obtained from Eq. (33). A rotation transformation 
to two new coordinates, V.r and Vcr, whose axes are 
parallel and normal to the intersection of the e' plane 
with the plane of the Ve, V. axes, picks up the direction 
of the normal coordinate Vcr. This transformation is 

Vsr = Ve[1 + (c2/b2) J-I/2...... V.[l + (b2jc2)]-1/2, 

Vcr= Ve[1 + (b2/C2) J-I/2+ V.[l + (c2/b2) J-I/2. (49) 

The Jacobian is unity. The Vcr, Vsr axes can be located 
on Fig. 3(b) by a ,-....,60 0 counterclockwise rotation from 
the Ve , V. axes. Inverting Eqs. (49), substituting into 
Eq. (43), and integrating over V.r gives 

<R (Vcr, e)dVerde= (e/7rp,) 1/2(1 + Vcr [1 + (b2/ C2) J-I/21 

X exp[ ...... (f/p,) Vcr2......eJdVerde. (50) 

The one-way equilibrium transition rate is then obtained 
from Eq. (50) using 

<R(e, e') de'dE=<R[Vcr(E') , EJ I dVer/dE' I dE'dE 

and Ver(E', E) = (e' ...... aE)E-1(b2+c2)-1/2, with the desired 
result 

(51) 

This approximate rate does not satisfy the symmetry 
required by detailed balancing. A symmetric form can 
be constructed by taking the arithmetic mean of R(e, E') 
and R (E', E). Numerical comparisons show negligible 
distinction between the symmetric and unsymmetric 
rates. 

Introducing the approximations: 

a,-....,1, e"""'e= (E+e')/2 , 

and .6./2E«1 yields a simple symmetric kernel: 

<R(e,.6.) = [p,7re(b2+c2) J-I/2 exp[ ...... .6.2/p,e(b2+c2) ...... eJ, 

(52) 

where e= (E'+e)/2 is the mean energy, and .6.=e' ...... e 
is the energy transfer. This approximate one-way 
equilibrium transition rate is used in the calculations 
reported here. Figure 6 shows contours of constant 
nondimensional one-way equilibrium transition rate 
<R(e, e') in the range 100 to 1038 in f, e' space. The grad­
ient of <R(e, e') along the .6. axis is much greater than 
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along the E axis. This difference allows an expansion 
of the population X(e, t) about A=O to obtain an 
equivalent diffusion equation for X(e, t) from the 
master equation. The exponential decay in il follows 
from the Boltzmann factor. A typical well depth, ~= 13, 
is indicated by the dashed line in Fig. 6. There are 
four transition regions separated by E' = ~ and e=~: for 
E and E'>~, the gas atom is never trapped; when e and 
E' <~, transitions occur between states in the well; for 
e<~ and E'>~ desorption takes place; and in the region 
E' < ~ and e> ~ gas phase atoms are adsorbed. 

Once the equilibrium transition rate is known, the 
one-way equilibrium desorption rate, (R( j, e), is ob­
tained as the integral of (R(e', E) over ~<E'<oo given 
by Eq. (5). This is equivalent to integrating Eq. (52) 
over 0.5(~+e)<il<oo using A=2(il-e) with e as a 
parameter. The result is 

(R(j, e) = t exp( -4qpe+8cfe) {erfc[pl- (2qejl) J 

where 

and 

+ exp(8qpe) erfc[pl+ (2qejl) Jl (53) 

q= [iJ.(b2+C2) J-1/2, 

p= (4q2+1)1/2, 

I=H~+e)1/2. 

The Gaussian behavior of the kernel for Eq. (5), 
given by Eq. (52), is clear in Fig. 7 where the non­
dimensional transition rate is plotted versus energy 
transfer for iJ.=0.5 and p=3.16. The two curves, equiv­
alent to slicing Fig. 6 along il= 10 and il= 30, indicate 
that the mean energy transfer increases as the incident 
energy increases. This is reasonable since harder colli­
sions should be more impulsive. The broadening of the 
kernel half-width appears in Eq. (52) as a Gaussian 
scale factor of E-1. 

1.2 

-I 0 

NORMALIZED 
TRANSITION KERNEL 
RIE,t.)It.oIE) 

E=30. 

ENERGY TRANSFER, t::. 
2 

FIG. 7. Normalized transition kernel versus energy transfer 
for 1'=3.16 and /,=0.5 with .= 10 and 30. Similar results are 
obtained for all/, and 1'. 
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o 2 4 6 8 10 12 14 16 18 20 22 

ENERGY,E 

FIG. 8. Energy transfer moments versus incident energy for 
1'=3.16 and /,=0.5. Criterion t.,= 1/2 (at.,/a.) is satisfied for 
.>2. 

B. Steady State Adatom Energy Distribution 

Two methods were used to obtain approximate solu­
tions to the master equation for the steady state adatom 
energy distribution. 

1. Equivalent Diffusion Equation 

Equation 3 may be converted to an equivalent diffu­
sion equation27 which identifies the desorption process 
with a diffusion process in phase space.24 This is a par­
ticular form of the more general transformation to a 
Fokker-Planck equation.25 In the steady state approxi­
mation the equivalent diffusion equation is 

o 
- a[A2(e)J[ox(e)/oeJI=0 (54) 
oe 

where 

An(e)= L: (e'-e)n(R(e,e')dE' 

is the nth moment of the energy transfer with respect 
to the equilibrium transition rate. Equation (54) is a 
valid approximation to the master equation when the 
form of (R(e, e') is such that A1~toA2/oe. 

Figure 8, where p= 3.16 and iJ.= 0.5, indicates this 
criteria is satisfied for e> 2 for the kernel given by Eq. 
(52). This result is typical for all values of the inertia 
and frequency parameters. Fig. 8 also displays the 
exponential energy dependence of An(e) due to the 
Boltzmann factor in (R(e, e'). The normalization condi­
tion, x(O) = 1, replaces the boundary condition at the 
bottom of the well since the solution of Eq. (54) is not 
well defined with first derivative boundary conditions. 
The boundary condition at e=~ is (A2(~)/2)o(~)/oe= 
- 2r (~)x (~), where ~ is the well depth and r (~) is the 
"one-way equilibrium desorption flux", 

r(~) = t lao (R(e, e')de'de. (55) 
o . 8 

Once the equilibrium transition rate is known, r (~) 
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can be integrated directly. Using the approximate 
kernel given by Eq. (52) and changing variables to 
~ and ~, r (<<5) is obtained by integrating over 2 (<<5-~) < 
~<ao for -ao<~<<<5 and over 2(~-«5)<~<ao for 
«5<~< ao, with the result 

r (<<5) = exp( - «5+ «5/16q2) erf( «51/2/4q). (56) 

This approximate equilibrium desorption flux is valid 
when a~1, 2«5/!L»1 and 8q2»1. 

The steady state reduced population in the diffusion 
approximation is, integrating Eq. (54) subject to the 
above boundary conditions, 

;x(E) = 1-{ ~2(E)-ldE / (f ~2(E)-ldE+tr(<<5)-I). 
(57) 

Numerical integration, using Eq. (56) for r(<<5) , and 
~2(~) as given in the Appendix, gives the results de­
scribed here. 

The diffusion approximation is useful since its range 
of validity includes significant non equilibrium effects, 
and the moments of the transition rate CR(E, Vc, V8 ), 

as shown in the Appendix, are sufficient to obtain a 
solution. A criterion for validity of the diffusion solu­
tion is given by the mean square energy transfer per 
collision ~2(E)/~O(E), shown in Fig. 9 for v=3.18, 
!L=0.72, and v=3.14, !L=0.46. When ~d~o<1, the 
diffusion solution is accurate. When ~2/ ~o> 1, the 
terms O(~n) dropped in the diffusion approximation 
become important. 

Figure 1O(a) shows equivalent diffusion equation 
solutions given by Eq. (57) for the steady state re­
duced population for v= 3.16, !L= 0.5, and «5= 10 and 
30. The ratio of the actual to the equilibrium energy 
distribution is plotted versus energy below the top of 
the well. Those energy levels for which X(E) equals one 
have a Boltzmann distribution. The levels for which 
X(E) is less than one are depleted. The magnitude of 
the depletion is determined by the rate at which atoms 

"diffuse" up the well to replace the adatoms that de­
sorb. When the energy transfer in a collision is small, 
diffusive movement of adatoms among the energy states 
in the well is slower than the desorption process, and 
the upper levels deplete. However, when the energy 
transfer is large, the desorbed atoms are rapidly re­
placed by ada toms from lower levels, and the true 
population approaches an equilibrium population. 

2. Iteration Solution 

When the energy transfer per collision is large, 
~2/ ~> 1, iteration schemes converge rapidly, and the 
first iteration is a valid approximation to X(E). The 
steady state ada tom energy distribution is then ob­
tained from an iteration solution to Eq. (10) in the 
form 

Xi(E) = t CR(E, ~')xH(E')dl / f'" CR(E, E')dl, (58) 
o 0 

where Xi(E) is the jth iteration approximation to the 
steady state reduced population. Assuming the trial 
function XO(~) = 1.0 for E<<<5, and substituting Eq. (52) 
into Eq. (58) with a change in integration variable 
from E' to (~)1/2, gives 

Xl(E) = t CR(x, E)dx / f'" CR(x, E)dx, (59) 
o 0 
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FIG. 10. Steady state reduced adatom energy population. (a) 
diffusion approximation for p=3.16 and p.=0.5 with 0= 10 and 30; 
(b) comparison of iteration and diffusion approximations for 
p=3.18 and p.=0.72 at 0=55.6. X indicates second iteration, 
X2(0). 
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where <R(x, e) = (2/r1/2) exp- (p2xL g2x-2+pg) with 
x= (E)1/2 and g= 2qe. Integration42 ,43 yields a first inte­
ation approximation for the steady state reduced 
population: 

X1(e) = I-tl erfc[pl- (2qe/l) + erfc[pl+ (2qe/l) ] 

X exp(8pqe)}. (60) 

A second iteration approximation for the steady state 
population at the top of the well, x2(5), may be found 
by numerical integration of Eq. (58) with j=2 and 
e=5, using Eq. (59) for XH(e'). The analytic single 
iteration approximation, Eq. (60), is used in calcula­
tions reported here. Although no direct comparison is 
possible Fig. 10(b) shows the equivalent diffusion equa­
tion and iteration solution approximate steady state 
reduced populations for 1'=3.18, p.=0.72 at 5=55.6. 
X indicates a second iteration x2(5). The mean energy 
transfer per collision ~2(5)/~o(5) is 1.5. The actual 
population is close to equilibrium, and similar ratios 
of the steady state to equilibrium rate constants are 
obtained from both methods: diffusion equation 
kd/kde= 0.86, and iteration solution kd/kde= 0.88. 

C. Steady State Rate Constants 

The energy integral of the master equation yields 
the adsorption and desorption rate constants in the 
steady state approximation. Two methods have been 
described for obtaining the steady state reduced popu­
lation and the equilibrium desorption flux, required by 
Eqs. (15) and (16) for these rates. The iteration solu­
tion numerically integrates Eqs. (15) and (16) using 
Eq. (60) for the steady reduced population X(E) and 
Eq. (53) for the equilibrium desorption rate <R(f, E). 
The diffusion method formally integrates Eqs. (15) 
and (16) using Eq. (57) for the steady state reduced 
population X (E), and Eq. (56) for the desorption flux 
r (5) required as a boundary condition. Since the 
iteration method is valid over a restricted range of 
similarity parameters where the ada tom ensemble is 
close to equilibrium, the diffusion method is used for the 
results described here. 

The steady state desorption rate constant, obtained 
in the diffusion approximation from Eq. (15) noting 
that NkT/Q= A"wg/2r for the collision model described 
in Sec. III, is 

kd= [:: ({ ~2-1dE+ir(5)-1) r
1
, (61) 

where ~2 is given by Eq. (A9) and r (5) is given by 
Eq. (57). The equilibrium desorption rate constant is 
obtained from Eq. (15) using x(e) = 1: 

kde= (wg/2r) r (15). (62) 

The classical desorption rate constant kde is given by 
Eq. (2). The classical derivation1 assumes that (1) 
the gas phase and the adsorbed phase are at equilib­
rium; and (2) the sticking coefficient is unity so that 

;­
Z 
<l 
;­
(j") 

z 
o 
u 
w 
~ 
0:: 

1.0 ~-"""=--'----'C--~----'----,----,--,-----, 
8 

6 

2 

6 

-fL=1.O 
4 --fL=0.2 

2 

I 0·2.'---_'------::---_LL-~:__----"---.l---.l---'~---' 
2 3 4 

FREQUENCY PARAMETER,v 

FIG. 11. Ratio of the steady state to the equilibrium rate 
constant versus frequency parameter, v for a= 10 with contours 
of ).1=0.2 and 1 shown. The steady state rate constant is orders 
of magnitude below the equilibrium rate constant at "resonance" 
values of v. 

the rate of arrival equals the rate of adsorption. These 
assumptions are not physically realistic during the 
adsorption-desorption relaxation processes. The equi­
librium desorption rate constant, Eq. (62), is valid 
when the first assumption is correct, and the "steady 
state" desorption rate constant Eq. (61) does not re­
quire either assumption. For reference, the equilibrium 
constant for the adsorption-clesorption process is 

Ke= (mg/2rkT)1/2wge-B, (63) 

and the classical adsorption rate constant is the arrival 
rate, 

(64) 

When Eq. (17) is valid, the equilibrium adsorption 
rate constant is 

kae= (kT/2rmg)1/2r(5) exp(c5), (65) 

and the corresponding steady state adsorption rate 
constant is 

ka = (kT/2rmg)1/2 [2 ~& ~2(E)-1dE+tr(5)-1r1 exp(5). 

(66) 

Equation (17) shows that the ratio of steady state 
to equilibrium rate constants is independent of the di­
rection of the process. From Eq. (17) with Eqs. (61) 
and (62) or Eqs. (66) and (65), 

ka/kae=kd/kde= (t+2r(c5) ~& ~2(e)-1dEr1. (67) 
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FIG. 12. Resonance values v,(,..) of the frequency parameter 
in,.., v space. The adiabatic limit is reached, and the mean energy 
transfer goes to zero on the contours indexed by n. 

In the adiabatic limit A2~, and ka/kae=kd/kde~. In 
the impulsive limit A2 is a maximum. Since v-'>OO gives 
the adiabatic limit and 0-'>00 gives the impulsive limit, 
nonequilibrium effects generally increase as v increases 
and decreases as 0 increases. Figure 11 presents the ratio 
of the steady state to equilibrium rate constants given 
by Eq. (67) for ",=0.2 and 1 with 0= 10. Under this 
condition of fixed 0, the classical desorption and ad­
sorption rate constants for a given gas species would be 
constants. 

An interesting effect is shown by the contours of 
constant J.l. in Fig. 11 which pinpoint the values of the 
similarity parameters corresponding to highly non­
equilibrium adatom energy distributions. "Resonance" 
occurs when the larger normal mode frequency given by 
Eq. (30) is an odd multiple of the smaller: 

Wl= (2n+l)w2, n= 1, 2, 3···. (68) 

For normal mode frequencies which are not independ­
ent, the period of both the gas and the surface atom 
motion is a multiple of the longer of the two normal 
mode periods, 27r/W2. The end of a collision occurs at 
t= Tc= 7r/W2, and since y and z have a common period, 
the velocities if (Tc) and i (Tc) return to their initial mag­
nitudes. Thus at resonance the energy transfer is 

(69) 

and the adiabatic limit is reached. At frequency param­
eters near resonance, the steady state rate constant is 
orders of magnitude smaller than the equilibrium rate 
constant. Resonance is therefore a special case where 
non equilibrium effects are extremely important. In­
cluding anharmonic damping would round off the 
minima in Fig. 11, but would not change the qualita­
tive picture. 

Using Eq. (30) for the normal mode frequencies in 
Eq. (68) obtains the resonance values of v as a function 
of J.l. plotted in Fig. 12; 

v,(J.l.) = (2NI 1+[1-4-'(1 +J.l.) J/2}- (1 +J.l.) )1/2, (70) 

where 

4-'= 1- [(2n+ 1)2-1J2/[(2n+ 1)2+ IJ2, n= 1,2,3·· .. 

v,(J.l.) goes to 2n+ 1 in both the limit n-'>oo, and the 
limit J.l.~. With these results and the steady state 
adatom energy distribution previously derived, the 
magnitude and regions of import of nonequilibrium 
effects have been defined. 

Figure 13 shows the variation of the adsorption rate 
constants given by Eqs. (65) and (66) for v=3.18, 
J.l.= 0.72, and v= 2.66, J.l.= 0.38 over a range of dimension­
less well depths 0 from 10-80. The adsorption rate 
constant provides a more accurate measure of non­
equilibrium effects since the exponential temperature 
dependence of the desorption rate constant is not pres­
ent. The steady state and equilibrium rate constants 
shown are nondimensionalized with respect to the 
arrival rate, and the nondimensional well depth /) is 
equivalent to an inverse temperature. The displace­
ment of the kae lines below kac = 1 gives a measure of the 
effect of a nonunity sticking coefficient. The corre­
sponding displacement of the ka lines below the ka• 
lines indicates the effect of a nonequilibrium surface 
population. 

The results given here are for adsorption from an 
incident gas with a Boltzmann energy distribution 
about the surface temperature. When the incident gas 
stream has any other energy distribution, the adsorp­
tion rate constant is obtained from Eq. (19). The result 
is Eq. (66) multiplied by H(O) where H(O) is given 
by Eq. (9) as 

H(O) = fO <R(E, O)xg(E)dE / fa'" <R(E, O)dE. (71) 

For the case of a gas with a Boltzmann energy distribu-
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FIG. 13. Nondimensional steady state and equilibrium adsorp­
tion rate constants versus well depth for v=3.18, ,..=0.72 and 
v=2.66, ,..=0.38. 
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tion at a temperature T g , 

Xg(E) =1]1/2 exp[ -1](E-O)+E-OJ 

where 1]= T ITg. Substituting this expression and the 
value of CR(E, 0) obtained from Eq. (51) into Eq. (71) 
and integrating gives 

(
a2q2+ 1)1/2 

H(O) =1]1/2[expo(1]-1) J --
a2q2+1] 

erfc[0(a2q2+1]) JI/2 
X (72) 

erfc[0(a2q2+ 1) JI/2 . 

For the case of a monoenergetic incident beam of energy 
EO+ 0, xi E) = (4 VO/C)OD (E- 0- Eo) exp (E- 0), where OD is 
the Dirac delta function, and Eq. (71) gives 

H(O) = 4Vo ( a2q2+ 1 )1/2 exp[ -a2q2Eo- (a2q2+ 1)oJ 
C 71'(Eo+O) erfc[(a2q2+1)oJI/2' 

(73) 

where Vo= (2kTEo/mg)1/2 is the velocity of the atoms 
in the beam and c= (8kTI7I'mg)1/2 is the mean thermal 
speed for a gas of atoms in equilibrium with the sur­
face. Figure 14 shows H(0)1]-1/2 given by Eq. (72) 
versus the frequency parameter, P, for 1]=0, 1, and 10 
with M= 0.2 and 1. The well depth, 0, was fixed at 0= 10: 
There was no measurable variation of H(O) with well 
depth over 10<0<80. H(O) 1]-1 /2 = 1 for all Pr(M) and 
for 1]= 1. 

Figure 15 shows the 1] dependence of H(O) 1]-1/2 given 
by Eq. (72) for p=3.18, M=O.72, and p=2.66, M=0.38. 
The effect of the former set of parameters being "off 
resonance" while the latter is "on resonance" is clear 
from the near unity H(0)1]-1/2 for the resonance system. 

As a sample calculation of the steady state rate con­
stants, consider the case of a xenon gas impinging on 
a clean tungsten surface. Comparison of the soft cube 
model with scattering pattern datal8 indicates a fre­
quency parameter P= 2.02 and a well depth D= 45000 K 
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FIG. 14. H(0)-q-l/2 versus the frequency parameter I' for the 
inertia parameter, ~=0.2 and 1 with the temperature parameter, 
"1=0,1, and 10. At resonance and at '1=1, H(O)=l. 
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FIG. 15. H (0)-q-1I2 versus the ratio of the surface temperature 
to the gas temperature, 71= TIT. for 1'=3.18, ~=0.72, and 1'= 
2.66, ~=0.38. 

for this system. The inertia ratio is Jl.= 0.72. If the sur­
face temperature were 900 oK, 0 would be 5. If Tg = 

900oK, 1]=1, and H(O)=l: Therefore, from Eq. (66), 
ka = 1.98X loa cm secl • If T g = 225°K, 1]=4.0 and 
from Eq. (72) H(O) = 1.12: Therefore, from Eq. (19) 
ka = 2.22 X loa cm sec l • The desorption rate constant 
is the same for all Tg; here kd=5.85X109 secl . Note 
that the energy distribution of the incident stream pri­
marily affects the sticking coefficient while the steady 
state distribution given by Eq. (57) remains a good 
approximation to the ada tom energy distribution for 
all 1]. 

V. CONCLUDING REMARKS 

In summary, the time evolution of a nonequilibrium 
ensemble of gas atoms adsorbed on a solid surface has 
been described. The temperature and atomic species 
dependence of the phenomenological rate constants 
in the experimentally observed first-order rate equation 
has been obtained from the energy integral of the 
governing master equation. The pertinent similarity 
parameters and energy transition probabilities for gas 
atoms colliding with solid surfaces have been derived 
from a classical interaction model using a gas-surface 
potential composed of an oscillating harmonic repul­
sion and a stationary attraction. The master equation 
for the reduced ada tom energy population has been 
solved in the steady state approximation by interaction 
when the mean energy transfer per collision is greater 
than kT and by conversion to an equivalent diffusion 
equation with the second moment of the energy transfer 
assigned the role of diffusion coefficient in the case of 
mean energy transfer less than kT. 

The magnitude of the departure from equilibrium 
due to the depletion of the energy levels near the top 
of the surface potential well is defined by the steady 
state reduced adatom energy population. It was found 
that for "resonance" values of the ratio of surface-gas 
oscillator frequencies, gas-surface collisions were suf-
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ficiently adiabatic that the adatom energy distribu­
tions were appreciably nonequilibrium, and the steady 
state rate constants were depressed orders of magnitude 
below the equilibrium rate constants. Experimental 
verification of this prediction would be extremely useful. 

The ratio of the steady state desorption to adsorp­
tion rate constants is the equilibrium constant, unless 
an incident gas exists with an energy distribution which 
is not Boltzmann about the surface temperature. If 
such a gas exists the adsorption rate constant is modi­
fied by the ratio of the adsorption rate at the bottom 
of the gas-surface potential well from the actual in­
cident energy distribution to the adsorption rate at 
that energy level from an equilibrium incident energy 
distribution. The desorption rate constant is unmodi­
fied: Therefore, the ratio of rate constants is the product 
of the equilibrium constant and the ratio of adsorption 
rates at the bottom of the well. 

Comparisons with experimental data, as described 
in a later paper, indicate the results of this analysis are 
reasonable; however, insufficient experimental results 
are available at the present time to say that the theory 
has been confirmed. This treatment obtains the de­
tailed time history of the energy distribution of the 
adsorbed ensemble. The adsorption-desorption rate 
problem considered here is but one of a large set of 
problems whose solution may be described by similar 
analysis. Gas-surface potential parameters obtained 
from this approach permit prediction of many phe­
nomena: Therefore, rigorous experimental verification 
is feasible. 

Possible extensions of the model are (1) to account 
for surface roughness by introducing a distribution of 
surface orientations or well depths; (2) to include 
energy transitions induced by adatom-adatom colli­
sions in the master equation, thus eliminating the low 
surface concentration restriction; and (3) to add 
another degree of freedom to the master equation to 
account for internal energy exitation, thus extending 
the analysis to admolecules. 
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APPENDIX: ENERGY TRANSFER MOMENTS 

The moments defined in Sec. IV are evaluated here 
for the collision model described in Sec. III. Using the 
equilibrium transition rate given by Eq. (43) for the 
required kernel and recognizing that integration over 

€' is equivalent to integration over Ve and V. yields 

X exp- ~ (Ve2+ V8
2+J.L)dVcdVs , (AI) 

J.L 

where the lower limit of Vc has been extended to - 00 

with a negligible additional contribution to the integral. 
Since the energy transfer .:l is implicitly dependent on 
Vc and V. through the collision duration To, it is neces­
sary to approximate .:l by a two-dimensional Taylor 
expansion about the maximum in the kernel taken here 
to second order. This expansion is 

.:l(VcVs ) =.l+.lv,(Vc- Vc)+.lv.(V,- Vs) 

+t[.lv,voCVc- Vc)2+2.lv,v.CVe- Ve) (Vs - V.) 

+.lv.v.(Vs - Vs )2], (A2) 

where the tilde superscript indicates evaluation at the 
kernel maximum (V. = 0, Vc=0.S[(1+21l/€)1/L l]} 
and subscripts indicate differentiation. Third-order 
terms are odd and contribute negligibly to the integral. 
The coefficients in Eq. (A2) are 

.lv, = 2€yyv" 

.lv. = 2€yyv., 

where 

with 

.lv, v, = 2€(Yv,2+yyv,V,) , 

.lv,v. = 2€(yv.yv, +YYv,v.), 

.lv.v.= 2€(yv.2+yyv,), 

A = (S-WI sinwITc-w2 sinw2Tc) / (1- f), 

j2= (COSW2Tc- COSWITc)/(WI2_W22),,2, 

(A3) 

ja= [(1_,,2WI2) COSW2Tc- (1-,,2w22) COSWITc]/(WI2-wl),,2, 

and where 

Yv,v, = [(WI sinwITc-w2 sinw2Tc)/(wI2-w22) "2]TcV,, 

Yv, v. = [(WI sinwITc-w2 sinw2Te) / (WI2_W22) ,,2]TcV., 

(AS) 

Yv.v.= [W22(COSWITc- COSW2Tc)/(l-S-) ]TcV., (A6) 

with 

TeV, = (WI sinwITc-w2 sinw2Te) / (W12_W22) (y-i) ,,2, 

TeV.=W22(COSWITc- COSW2Tc)/(I-f) (y-i), (A7) 

where Te( V., Ve) is evaluated via Eq. (33). These ex­
pressions were obtained by differentiating Eq. (31). 
Substituting Eqs. (A2) through (A7) into (AI) and 
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integrating obtains the following moments: 

~o(E) = exp( -e), (AS) 

~1(e) = [exp( -e) ](.i+[(JL/2E) - Vc].iv, 

+ (JL/4E) {[(2e/JL) VeL 2Ve+ l].iv,V, +.iv.v.l), 

(A9) 

~2(e) = [exp( -e) ] (.i2+[(JL/2e) - Ve].i.iv, 

+ (JL/2E) {[(2ejJL) VeL2Vc+ 1] (.iv,2+.i.iv,vJ 

+ .iV•2+ .i.iv.v.l ). (AW) 

The zeroth moment is simply the collision rate. The 
first moment, as indicated in Fig. S satisfies the cri­
teria2'7 ~1(e) =0.Sa~2(e)/ae required for validity of the 
diffusion approximation. A measure of the mean energy 
transfer per collision is given by the ratio of the second 
to zeroth moments. The dominance of second-order 
terms in the energy transfer Taylor expansion is ex­
hibited in the linear dependence of ~2/ ~ on e as shown 
in Fig. 9. Using Eq. (AW) to evaluate ~2 in Eq. (30) 
gives the desired steady state solution to the approxi­
mate diffusion equation for the ada tom energy dis­
tribution. 
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