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The modified phase-space theory of reaction rates is applied to the dissociation of HCI in a heat bath 
of argon atoms. Excellent agreement is obtained between the theoretical predictions and the shock-tube 
measurements of the dissociation rate coefficient over the temperature range 2500-5000oK. The recrossing 
correction factor and nonequilibrium correction factor are obtained from Monte Carlo trajectory cal­
culations for states near the dissociation limit. The trajectories were sampled within the reaction zone, 
with a weight proportional to the equilibrium reaction rate, and numerically integrated in both time­
wise directions to determine the complete histories of the collisions. A simple separable function for the 
equilibrium transition rate R «i, </) from initial states <i to final states </ was obtained to fit 
the numerical data with sufficient accuracy and was used to solve the steady-state master equation. Im­
portant features of collisions of highly asymmetric diatomic molecules are discussed, and several typical 
reactive trajectories are shown to illustrate the importance of rotational motion is such collisions. 

I. INTRODUCTION 

The modified phase-space theory of reaction rates has 
been developed by Keck and his co-workersl-S and 
applied quite successfully to the three-body recombin­
ation and dissociation of diatomic molecules which have 
similar atomic masses. However, as demonstrated by 
Shui, Appleton, and Keck,4 the theoretical predictions 
of the dissociation rate coefficients kd for HF and HCI 
are much too low by comparison with experimental 
measurements (see Figs. 9 and 10 of Ref. 4), although 
the barrier rate coefficients kdB lie above the experi­
mental measurements and have about the right 
temperature dependence. The reason for this disagree­
ment was believed to be that the estimates of the 
recrossing correction factors (N / No) ;S0.01, and the 
non equilibrium correction factors (k/ke )""'O.Ol were 
too small. 

The correlation formulas used in Ref. 4 to estimate 
the values of (N /No) and (k/ke) were deduced using 
the results of Monte Carlo trajectory calculations6 and 
master equation solutions7 in which the recombining 
(dissociating) molecules had atoms of similar masses. 
It was suggested4 that the mechanics of reacting 
collision processes in which one of the recombining 
atoms had a very small mass, such as the hydrogen 
halides, was sufficiently different from those cases con­
sidered in Refs. 6 and 7, that the correlation formulas 
were no longer valid. 

This paper presents results of Monte Carlo trajectory 
calculations for the HCI+Ar system, and from these, 
determinations were made of the dissociation rate 
coefficients which could be compared with shock-tube 
measurements. In Sec. II the equations and statistical 
methods used to obtain the numerical results are de-
rived and summarized. Section III presents a summary 
of the results and their comparison with the experi­
mental measurements, and Sec. IV contains our con­
cluding discussion. 

II. MONTE CARLO TRAJECTORY CALCULATIONS 

The steady state reaction rate coefficient 
script r for recombination; d for dissociation) 
by the relationship 

k=kB(N/No) (k/ke), 

k (sub­
is given 

(2.1) 

where the "barrier" rate coefficient kB is defined as 

(2.2) 

In Eq. (2.2), V is the normalization volume in con­
figuration space, [M;] is the concentration of particles 
of type Mj in the initial state, 

CRv(f) = r p(v.n)ds JS (,) 
(2.3) 

is the "variational rate" (see Ref. 2) for the surface 
S(f) defined by 

(H-B)/kT=f, (2.4) 

and the corresponding equilibrium one-way crossing 
rate CR(f) is given by the expression 

CR(E) = (N / No) ·(J{v(E). (2.5) 

Here, p is the density of the representative points, v is 
the generalized velocity, n is the unit outward normal 
to ds, and Band H are the barrier height and Hamil­
tonian of the molecule, respectively. As implied by 
Eq. (2.4), the energy (E) of the molecule is measured 
from the top of the rotational barrier. Other defini­
tions and more detailed descriptions can be found in 
Refs. 2 and 3. 

Monte Carlo trajectory calculations as applied here 
efficiently evaluate the correction factors (N / No) 
and (k/ke) by statistically sampling within the reaction 
zone and numerically integrating the classical equations 
of motion in both time-wise directions to determine the 
complete history of the collisions. By sampling with a 
weight proportional to the local flow rate p(v·n) 
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across the surface S(E), a statistical distribution of 
trajectories is obtained which reflects their a priori 
contribution to the reaction rate, thus enabling cal­
culations to be made of the correction factors without 
further weighting. The representative points were 
selected from the reaction zone region, i.e., on the sur­
face S(E), and the equations of motion were inte­
grated outwards in both timewise directions and 
terminated as soon as the interaction with the third 
body became negligible. This avoided unnecessary 
integrations in regions where interactions were very 
weak and inconsequential to the outcome of the 
collisions. 

A. Recrossing Correction Factor 

The No trajectories sampled which cross the barrier 
surface, E=O, can be divided into four categories, i.e., 
f~b, j~j, b~b, and ~j, depending on whether the 
initial and final states of the molecule are free (f) 
or bound (b). The j~b trajectories are "reactive" 
(in terms of recombination) while the others are all 
regarded as being "nonreactive." The recrossing cor­
rection factor (N / No) is then given by the expression6 

N /No= L [N(f I n I b)/nJ/No, (2.6) 
n 

where N is the effective number of reactive trajectories 
and N (j I nib) is the number of trajectories that go 
from a free state j to a bound state b with n crossings of 
the barrier surface in the direction j~b, and n-l 
crossings in the direction b~j. 

B. Transition Rates and Nonequilibrium 
Correction Factors 

The non equilibrium correction factor (k/ke) is the 
ratio between the steady state reaction rate and the 
corresponding equilibrium reaction rate coefficient. 
Keck and Carrier7 investigated the coupled vibration­
dissociation-recombination process for gas mixtures 
which consisted primarily of diatomic molecules highly 
diluted in a heat bath of inert gas atoms such as argon. 
They presented techniques for solving the appropriate 
master equations and showed that great simplifications 
could be obtained if the kernel R(E;, Ef) in the master 
equation was separable. The kernel R (Ei, Ef) is the 
"one-way" equilibrium transition rate between energy 
states E= Ei, and E= Ej, per unit volume, per unit initial 
and final energies. The energies are measured in the 
units of kT. 

Monte Carlo trajectory calculations were first used 
to generate a relative numerical distribution of R (Ei' Ef) 
as a function of Ei and Ef. A functional form for R(Ei' Ef) 
was then obtained by a suitable fitting procedure 
which approximated the numerical distribution. This 
functional form was used, following Keck and Carrier's 
analysis,? to solve the appropriate master equation and 

thus to obtain the corresponding nonequilibrium cor­
rection factors k/ke • 

The method of generating the relative numerical 
distributions of R(Ei, Ef) from Monte Carlo trajectory 
calculations employed was similar to that used by 
Mansbach and Keck8 which they applied to the 
problem of atomic excitation and ionization by thermal 
electrons. Briefly, samples were taken from surfaces 
within a few kT below the rotational barrier (e.g., 
E= -1, - 2, -3) in addition to the samples taken on 
the barrier surface (E= 0). The reactive trajectories, 
i.e., j~b, were divided into groups or "boxes," accord­
ing to the magnitude of Ei and Ej, and the effective 
number of reactive trajectories in each box was then 
counted. The equilibrium transition rate is given by 

R(Ei, Ef) = [jk(E) / (6.E)2}CR v (E), (2.7) 

where (6.E)2 is the size of the box, E is the position of the 
surface from which samples were taken, the subscript 
k specifies the box defined by E;, E" and (6.E)2, and 

No 

A(E) = L (Xjk/nj)/No(E) (2.8) 
i-l 

is the effective number of reactive trajectories falling 
in the kth box. Here, Xjk = 1 if the trajectory is reactive, 
Xjk=O if it is nonreactive, and nj is the number of 
crossings of that trajectory in the reactive direction 
(e.g., from free to bound, in the case of recombination). 

As was observed previously, a separable form of the 
kernel R( Ei, Ef) results in great simplification in solving 
the master equations. We found that the empirical form 

(2.9) 

was able to reproduce the relative numerical distribu­
tion of R(Ei, Ef) with sufficient accuracy. In Eq. (2.9) 
A, a, and (3 are constants and G(Ef) is a relatively 
slowly varying function. 

It was observed from the map of the relative numeri­
cal distribution of R(Ei, Ef) that the kernel exhibits a 
sharp maximum along the diagonal Ei = E" dies off very 
rapidly away from the diagonal, and varies relatively 
slowly along the diagonal. Thus the fitting was made 
easier by rotating the energy coordinates and expressing 
the kernel in the form R(6., €), where 

(2.lOa) 

is the absolute value of the energy transfer and 

(2.10b) 

is the mean of the initial and final energies. The sym­
metry of R(Ei, Ef) in Ei and Ef requires that 

R(E;, Ef) =R(6., E). (2.11) 

Thus, in view of the kernel's rapid decay with 6. and 
the fact that the function G(Ef) is relatively slowly 
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varying, we can write 

with 
R(~,~) =AG(~) exp( -a~-bE) 

a=a-b/2, and {1=a+b/2. 

(2.12) 

(2.13) 

Various moment of the energy transfer with respect 
to the kernel were used in the fitting procedure (see 
also Sec. III.B). The mth moment of energy transfer 
(Ei-Et) with respect to R(E;, Et)/CRv(E) is defined as 

Km(E) = ['00 dEj /.00 dE{R~:i(E~) }Ei-Ej)m-l. (2.14) 

By substituting Eqs. (2.7) and (2.8) into Eq. (2.14) 
and evaluating the integral by Monte Carlo methods, 
we obtain 

(2.15) 

where Xj= 1 if the trajectory is reactive, and Xj= ° 
otherwise. This is the equation used in the actual cal­
culation of the moments Km(E) from data generated 
by trajectory calculations. 

Now, the equilibrium one-way crossing rate CR(E) IS 

defined as 

(2.16) 

Rotating the energy coordinates to [~, ~] and using 
Eq. (2.12), we obtain 

CR(E)~AG(E) exp(-bE)/(aL b2/4), (2.17) 

where G(~) has been expanded about e and small terms 
dropped. 

In addition, we found by plotting (N /No) versus E, 
that the form 

from any of these ratios. However, since we anticipate 
from the diffusion analysis7 that it is the first and the 
second moments which are most important for de­
termining the steady-state rate coefficients, we have 
used the value of a given by the ratio 2KI! K2• 

Having obtained a separable form for the transition 
kernel, we can now proceed to solve the steady-state 
master equations which will yield the nonequilibrium 
correction factor. Keck and Carrier1 showed that the 
steady-state master equation can be transformed ex­
actly into an equivalent diffusion equation and then 
solved subject to the appropriate boundary conditions. 
For the case of the separable kernel, they assumed 

and 

R(E;, Ej) =r2(Ei)rl(ej); 

=r2(ej)rl(Ei) ; 

R(e, E) =rl(e)rc, 

where re is a constant and 

R(e, E) = to R(E', e)de' 
o 

(2.24) 

(2.25) 

(2.26) 

is the equilibrium recombination (or dissociation) rate. 
By solving the equivalent diffusion equation, they 

obtained the expression for the nonequilibrium cor­
rection factor 

~ = [CR(O)( fO WZ-2de+ r2«0»)]-1 (2.27) 
k. L6 reZ ° 

where CR(O) is the one-way equilibrium flux of mole­
cules across the energy surface e=O, defined in Eq. 
(2.16), and 

(2.28) 

N(E)/No(e) =C exp(pe) (2.18) is the Wronskian of r2 and rl, and 

with both C and p constant, correlates the numerical 
data reasonably well. By combining Eqs. (2.5), 
(2.17), and (2.18), we obtain 

CRv(E) exp(e)/CR.(O) =G(e), (2.19) 

b=1-p, 
and 

A/CR. (0) =C(a2-b2/4). 

(2.20) 

(2.21) 

The moments defined by Eq. (2.14) can then be 
evaluated by using the above relationships as follows: 

Km(e) =A[G(e) exp( -e)CRv(O)]-l 

j,+t;./2 100 
X d~ d~G(~) exp( -a~-b~)~m-l. 

,-t;./2 0 
(2.22) 

When a»b/2, a good approximation is 

Km(e)~Cm!al-m exp[(I-b)E]. (2.23) 

The ratios of these moments are independent of the 
energy E, and the parameter a may be obtained directly 

Z(E) =r2(E) L: r1(E')dE'+r1(E)( / r2(E')de'+re) 

(2.29) 

is the equilibrium collision rate, and o=D/kT is the 
dimensionless potential-well depth of the molecule. 

Since we sampled trajectories for recombination, the 
condition, Ei> Ej, was satisfied in all cases. Thus, for the 
kernel given by Eq. (2.9), we have 

r2( Ei) = exp( - {1E;}, rI( Ej) = AG( Ej) exp(aEj) (2.30) 

and 
(2.31) 

By substituting Eqs. (2.34) and (2.35) into Eqs. (2.32) 
and (2.33) and then into Eq. (2.31), we obtain 

k/k.~[I- (a/i3)2J[G(e*) /G(O)], (2.32) 

where E* is the location of the maximum of 
G(e) exp( -bE). 
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ITI. RESULTS 

A. The Interaction Potential 

A Morse potential function is used to describe the 
two-body interaction between Hand CI as before,4 
with the same potential .parameters; i.e.;, D= 4.62 
eV (53600 OK), r.= 1.275 A, and (3= 1.87 A-I. How­
ever, dumb-bell models as used beforea.6 for the three­
body interaction potential are not well defined when 
V XM and V YM are considerably different and have 
attractive potential wells. To overcome this difficulty, 
we reverted to the use of the purely repulsive Mason­
Vanderslice exponential interaction potential,1,7,9 

V =A exp( -rll). 

Then the dumbbell model is defined as 

Va= VXM for V XM> V yM , 

and 

(3.1) 

Va= VYM for V XM< V yM. (3.2) 

This change should not affect the results which are of 
concern here since we consider only dissociation rate 

TABLE I. Mason-Vanderslice potential parameters. 

System 

Ar+H 

Ar+Cl 

A (eV) 

268 

1060 

1 (1) 

0.35 

0.35 

measurements at high temperatures (2500-5000 OK), 
and it has been shown3- 5 that the potential well in Va 
has negligible effects on reaction rate coefficients at 
such elevated temperatures. Table I summarizes the 
parameters AiM and liM used in the present calcu­
lations. 

B. Reaction Rates 

Table II shows the distribution of the three hundred 
trajectories sampled for the case of Ar+HCI at 25000 K 
(kT/D=0.0466) with E=O, classified according to the 
nature of their end states (see Sec. II.A). The impli­
cations of Table II have already been discussed by 
Keck.6 Of course, as pointed out before, his empirical 
correlation formula for (NINo) does not apply to the 
present case. In addition, Keck's Table I for homo­
nuclear molecules showed entries of comparable mag­
nitude for N(f I n If) and N(b I n I b); whereas, we 
found that N(f In 1f)>>N(b I n I b) for Ar+HCI. 
The reason for this difference will be explained in Sec. 
IV when we discuss details of the Ar+ HCI trajectories. 

The recrossing correction factor NINo for the various 
temperatures and surfaces sampled are plotted versus 
E in Fig. 1. No definite temperature dependence can be 
determined from the plot (Keck's previous results2,6 

also did not show any temperature effect on NINo). 

TABLE II. Distribution of trajectories with respect to class 
of reaction and number of traversals of the barrier surface (E = 0), 
for Ar+HCl at 2500 0 K (kT/D=0.047). 

N 
Class 

n 2 3 Total 

(flnlb) 91 8 99 
(flnlf) 142 9 2 153 
(b I n I b) 10 4 14 
(b I n If) 16 2 18 

Total 284 

Recrossing correction factor (N /No) = (91+8/2)/284=0.33 

Although there is considerable scatter in the data, the 
least-squares fit line does give a reasonable representa­
tion of all the data points. The parameters p=0.26, 
b=l-p=0.74, and C=[N(0)INo(0)J=0.27 are all 
obtained from this fitted line [see Eqs. (2.19) and 
(2.21) ]. 

The various moments Km(E) , as defined by Eq. 
(2.14), were then calculated using Eq. (2.15) and 
tabulated in Table III. The ratio 2Kli K 2';::da [see 
Eqs. (2.26) and (2.27) J is also included in the table. 

In order to complete the determination of the transi­
tion kernel R(Ei, Ej) and produce a map of its relative 
numerical distribution, we must first find the pre-ex­
ponen tial function G (Ej) (see Sec. n.B). Keck2 found 
that the function 

G(E) = [1- (-E/D)1/2J/[l + (-E/D)1 /2J (3.3) 

was able to represent his numerical calculations of 
ffiv(E)/ffiv(O) with sufficient accuracy, and we have 

TABLE III. Moments [Km(e) ] for Ar+HCl. 

kT/D Ko Kl K2 2Kt/K2 

5000 0.093 0 1.09 0.245 0.159 3.08 
-1 0.501 0.182 0.158 2.30 
-2 0.505 0.102 0.079 2.58 
-3 0.348 0.080 0.043 3.72 

mean 2.92 

3500 0.065 0 1.34 0.233 0.174 2.68 
-1 0.693 0.190 0.242 1.57 
-2 0.321 0.130 0.130 2.00 
-3 0.464 0.112 0.095 2.36 

mean 2.15 

2500 0.047 0 1. 71 0.331 0.332 1.99 
-1 0.675 0.192 0.247 1.56 
-2 0.555 0.202 0.241 1.68 
-3 0.364 0.157 0.162 1.94 

mean 1. 79 
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FIG. 1. Recrossing correction factors N I No versus energy of 
the surface from which samples were taken . • , T= 5000oK; 
__ , T=3500oK; 0, T=25oooK. Solid line is the best least-squares 
fit for all points. The slope of this line determines the parameter b. 

used this form for G (Ef). The resulting numerical dis­
tribution of R(Ei, Ej)/6lv (O) is shown in Fig. 2, again 
for Ar+ HCI at 2500 oK. The figures in the boxes repre­
sent the mean value of R(Ei, Ef)/6l v (O) for the box. 
Because of the sampling technique employed each 
value of E used in the calculations gives data in a 
quadrant that touches the diagonal Ei= EJ, at a value 
of (Ei+Ef)/2=E=E. Data in overlapping quadrants 
agreed within the statistical errors and were averaged 
to obtain the results shown. The total number of 
trajectories sampled was approximately three hundred 
for each value of E(E=O, -1, -2, -3). The results 
shown were calculated for Ei> Ef (recombination); 
however, since R(fi, Ej) is symmetrical in Ei and EJ, the 
values for Ei< EJ, may be obtained by reflection in the 
diagonal Ei= Ef. As was pointed out in Section II.B, 
the map shows that R(Ei, Ef) exhibits a sharp maximum 
ridge along Ei = EJ, which corresponds to zero energy 
transfer; this dies off rapidly as I E;- Ef I increases. 
Combining Eqs. (2.9) and (2.21), we obtain 

R(Ei, Ef)/m.(O) =C(a2-b2/4)G(Ef) exp(Ct'Ej-!1Ei). 

(3.4) 

Since all the parameters in Eq. (3.2) have been ob­
tained, we can use them to generate the function 
R(Ei, Ej)/mv(O). The parameter a used is the average 
of the four values of 2Kd K2 in Table III. The result 

TABLE IV. Dissociation rate coefficients for Ar+HCI. 

T(OK) kTID kdB NINo b a klk, kd 

5000 0.093 5.69-13 0.27 0.74 2.92 0.30 4.55-14 

3500 0.065 7.26-15 0.27 0.74 2.15 0.42 8.27-16 

2500 0.047 1.81-17 0.27 0.74 1. 79 0.50 2.44-18 

kdB and kd have units em' molecule-I. sec-I. 

for T = 2500 OK is plotted in the upper left corner of 
Fig. 2 as a contour map. We see that this map re­
produces all the important features of the actual dis­
tribution, and the agreement in general is very good. 

In Fig. 3 we have plotted [R(~, E) /m,(O) J/ 
[m(E)/6l(O)J versus ~. The factor [m(E)/6l(O)J is 
included for normalization purposes. The solid line 
passing through the bulk of the data points has a slope, 
a=1.79, as determined above (see Table III). It can 
be seen that for ~<0.5, the data points deviate con-

DISTRIBUTION OF 

R(Ej,Ef)/d(y (0) 

for 

Ar + HCl 

T = 2500
0
K 

kT/D = 0.047 

155 
140 ,35P.OBO[ 
i"'-t---j 0020 I 0.007 
I 0.16610.0401 1 

-r-t--L-l---- -t---
1
1
.
12 

AJO.1361 I I 
F3-.:?'1---j 0.041 I 0.006 I 0 
10.12110.0241 I I 

-r-~-~-T--__ L- __ ~---
1221.610331 1 I 

FS..:?4- - -' 0.044 I 0.009 : 

10.2110.IB: I I 
-r-~-~-'----~---1 o 

.41.~OB61 I I I 
1.6~T---I 0.095 I 0.025 I 0.007 I 
O.BI IQ37 I I I I 
_L-T---I---~-----I-------

I I I 
0.092 I 0.040 I I 

I I I ---T---1 0.003 I o 

0046 II 0 I I 
I 1 

-3 
Ej = (H-B)j IkT 

0 

-I 

-2 
I--
"'" "-

-
-3 III 

I 
I 

-4 ..;-

-5 

-6 
3 

FIG. 2. Map of numerical distribution of the function R(Ei, 
E/)/ffiv(O), where R(oi, Of) is the equilibrium transition rate 
and ffiv(O) is the variational rate for the surface E=O. The contour 
map, calculated from Eq. (3.2) using the fitted parameters, is 
plotted in the upper left corner to avoi.d overcrowding the. figure. 
Comparison may be done by reflection through the dIagonal 
Ei=Efo 

siderably from this line; however, the region around 
~~1, has the most important contribution in the 
determination of the non equilibrium correction factor, 
and the line fits the data very well in this region. 

We therefore conclude that our functional form for 
R (Ei, Ef) and the associated parameters determined 
above lead to a very good representation of the transi­
tion kernel. At the same time, it is still simple enough 
so that the steady-state master equation can be solved 
analytically without the usual reliance on a great deal 
of numerical computation. 

The nonequilibrium correction factors may now be 
calculated from Eqs. (2.13) and (2.36). The barrier 
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rate coefficients are taken from Ref. 4 and the results 
are summarized in Table IV for T= 5000, 3500, and 
2500 oK. It should be noted that for the results shown, 
the corresponding characteristic energy transfer in a 
collision is between O.4kT and 0.6kT. The statistical 
errors, based on one standard deviation, are estimated 
to be about 10% for (NINo) and 20% for (klke). 

Figure 4 is an Arrhenius plot of the measured (full 
lines and open points) and calculated (solid points) 
dissociation rate coefficients of HCI in Ar. It shows that 
the present theoretical predictions are in excellent 
agreement both in terms of magnitude and temper­
ature dependence with the experimental measurements 
of Seery and Bowman,lO Fishburne,11 and Jacobs, 
Cohen, and Giedt.12 We should point out that the 
major temperature dependence of kd is determined by 
the barrier rate coefficient kdB • The correction factors 
(NINo) and (kjk.) lower the rates and introduce an 
additional relatively weak temperature dependence to 
the rate coefficients. Error bars on the theoretical 
points show estimated statistical errors of ±20%. 

IV. DISCUSSION 

The Landau-Teller theory of vibrational relaxation,13 
as extended by Schwartz, Slawsky, and Herzfeld 
(SSH),14 which considered vibrational-translational 
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FIG. 3. The function [R(Il, ')/cR.(O)]/[cR(')/cR(O)] is 
plotted versus Il, the absolute value of energy transfer. e, 
.=0; 0, .= -1; A, .= -2; \7, .= -3. The factor [cR(.) /cR(O)] 
is included for normalization purposes so that the data can be 
better represented by a single line. The solid line which passes 
through the bulk of the data has a slope a taken from Table III. 
See text, Sec. III.B. 
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FIG. 4. Comparison between theoretical rredictions of the dis­
sociation rate coefficient and experiment a measurements, as a 
function of T. +, theoretical predictions; 0, Seeryet at.; (F), 
Fishburne; (J), Jacobs et at.; dashed curve represents the theoreti­
cal barrier rate coefficients. 

energy transfer, provided both a successful qualitative 
explanation and quantitative correlation of the vibra­
tional relaxation rates of most of the homonuclear 
diatomic molecules which have been investigated. 
However, when applied to highly asymmetric hetero­
nuclear diatomic molecules (e.g., HF and HCI), the 
theory predicted rates15 several orders of magnitude 
slower than those observed experimentally.16-20 This 
discrepancy led to the suspicion that rotational motion 
may be important in vibrational relaxation. Much 
work has been done in this respect, and it appears that 
by properly accounting for the rotational motion of the 
molecules, the very high vibrational relaxation rates for 
molecules such as HF and HCI, as well as the effects of 
deuteration, can now be explained and correlated. 
Detailed discussions and references on the topic of 
rotation-vibration coupling can be found in papers by 
Moore,21 Chen and Moore,22 and in a recent comment by 
Nikitin.23 

According to the SSH theory, the efficiency of energy 
transfer for a collision depends on an "adiabaticity 
factor" f(WT), where W is the vibrational frequency of 
the molecule, and T is the "effective time" of the 
collision, i.e., the time available for energy transfer. 
In the theory, the relative velocity between the center 

Downloaded 07 Dec 2011 to 129.10.124.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



4272 SHUI, APPLETON, AND KECK 

H 

H 

\ 
\ 

(bl 

" / Ar 
'------/ 

, , 

, , 
\ 

\ 
\ 

~ 
/ 

/ 
/ 

/ 

FIG. 5. Typical reactive trajectories. The thicker lines on the 
trajectories indicate zones of strong interaction. 

of mass of the molecule and the collision partner is used 
to estimate T; thus Ta(J.4XY,M)1/2, where /lXY,M= 

mXymM/ (mxy+mM) is the effective reduced mass of 
the collision complex. Such reasoning as this led Keck 
to seek a correlation of the recrossing correction 
factors (N /No) for homonuclear molecules and various 
collision partners on the basis of the adiabaticity 
parameter, wra (/lXY ,M / /lxy )1/2. However, for such 
systems as HCI+Ar, the hydrogen atom moves much 
more rapidly than does either the CI or Ar atoms due 
to its much lighter mass. As can be seen in the trajec­
tories shown in Fig. 5, the essential motion of the H 
atom is that of rotation about the CI atom. Thus a 
more correct collision time for these heteronuclear 
systems is determined by the motion of the H atom 
relative to the Ar atom and not by the relative motion 
of the HCI and Ar. Consequently, the quantity /IHCI.Ar 
in the SSH theory should more properly be replaced by 
J.4HAr=mHmAr/(mH+mAr)~mH, the reduced mass of 
the H-Ar collision. This point is clearly illustrated by 
the three reactive trajectories we plotted in Fig. 5. 
The duration of the strong interaction, where most of 
the energy and momentum transfers occur, is indicated 
by the thicker lines on the trajectories. We see that 
during this period of strong interaction (corresponding 
to the effective collision time), the Ar atom hardly 
moves relative to the CI atom whereas, by rotation, the 
H atom passes completely through the reaction zone. 
Since the adiabaticity factor f(wT) has a dependence 

given by the factor exp( -a'<!T)tJ, where both a and {3 
are of order unity, the change from /lXY,M to /lXM in­
creases the magnitude of the adiabaticity parameter 
to order unity for such systems as HCI+Ar and thus 
raises the calculated vibrational relaxation rates by 
several orders of magnitude in agreement with ex­
perimental observations. Additional trajectory cal­
culations for the heteronuclear molecules using different 
collision partners are required before we are in a position 
to deduce correlation formulas for the correction 
factors similar to those obtained by Keck. 

The inner dashed circles in Fig. 5 indicate the 
equilibrium separation for HCI molecules, the outer 
dashed circles are the positions Z2 of the rotational 
maximum evaluated at the end of the collision. In 
general the following observations can be made about 
the HCl-Ar collisions: 

1. For nonreactive collisions (unlike those shown in 
Fig. 5) the Ar atom acts as a block which prevents the 
H atom from reaching the CI atom by virtue of its 
position between the CI and H atoms; i.e., rHCl>rHAr. 
These collisions are, in fact, automatically excluded 
from our samples since they never reach the reaction 
zone. 

2. On the other hand, participation of Ar in the 
collision is necessary to take away the excess energy 
from H· CI and thereby effect a recombination. Thus 
typical reactive trajectories, such as those shown in 
Fig. 5, may be divided into three different phases: 

(i) The H atom approaches the Cl atom from the 
opposite side to the Ar atom with little or no inter­
ference from Ar. 

(ii) Due to the action of the strong attractive valence 
forces between Hand CI, the H atom cuts into a line 
joining Ar and CI and transfers energy and momentum 
to Ar. This is the zone of strong interaction (thicker 
line on the trajectories) during which most of the 
energy and momentum exchanges are effected. We 
note that at the beginning of this reaction zone, the Ar 
atom is usually very near the turning point with respect 
to the CI atom so that its kinetic energy is very low. 

(iii) The H atom, having lost sufficient energy, be­
comes bound to CI atom and then proceeds to vibrate 
and rotate about the latter; whereas, the Ar atom moves 
away from HCI molecule with an increased velocity. 

We should point out that for convenience of repre­
sentation in two dimensions, the trajectories shown in 
Fig. 5 have all three particles moving in the same 
plane. However, our calculations were, in general, 
three dimensional. 

In Sec. IILB we noted that N (f I n I f)>>N(b I nib) 
for Ar+ HCI collisions; whereas, Keck6 obtained 
N(f I n 1f)~N(b I n I b) for all the homonuclear 
molecules he investigated. The reason for this dif­
ference can now be explained. The variational reaction 
rate calculations show that the contribution to the 
reaction rate from collisions with the CI end of the 
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molecule is negligible. In addition, both Ar and CI 
can be regarded as almost stationary while the hydrogen 
atom moves about at high average velocities. Therefore, 
most of the energy exchanges that may change the 
state of HCI must come from the H-Ar collision, with 
very little direct influence from the CI atom. Our 
sampling procedure ensures that the molecule ~us~ be 
on the energy surface H - B = 0 at a certam time 
t = to and the trajectory must cross that surface at to 
with' a negative slope (for recombination); Le., the 
molecule must be in a free state (H-B>O) at some 
time t<to and must be losing energy to the Ar atom. 
Consider the case in which the H atom was initially 
bound to the CI atom at t«to• The result of the H+Ar 
collision would be either (a) a net loss of energy from 
H to Ar, with the HCI molecule remaining bound, or (b) 
a net gain of energy by H from Ar, making H free from 
Cl. Obviously trajectories (a) are not sampled by our 
procedure since they do not cross the surface H-B=O; 
nor do trajectories (b) cross the surface in the desired 
direction since, once the H atom becomes free after 
a collision with the Ar atom, its rapid motion will carry 
it away from the CI+Ar system. Thus no further 
significant energy transfer between Hand Ar, which 
would change the state of HCI, is probable; i.e., HCI 
remains free, and those trajectories are not sampled. 
On the other hand, it is easy to see that if H was 
initially free at t«to, its collision with Ar would pro­
duce f---'>b trajectories that satisfy our sampling re­
quirements. Consequently, the result N (f I n I f)>> 
N (b I nib) for Ar+ HCI collisions is expected. 

For homonuclear molecules, the outcome of case (b), 
above, may be quite different. The b---'>f transition would 
be a result of the collision between one end of the 
molecule and the third body, as before. However, 
rotation of the molecule may bring the other end into 
a collision with the third body and could thereby 
produce a f---'>b transition. These trajectories (b---'>f---'>b) 
satisfy our sampling requirements, and N (J I n I f) 
and N(b I n I b) may therefore have comparable 
magnitudes. Typical trajectories of this kind which 
illustrates our point will be presented when we report 
our work on homonuclear molecules. 

It should be noted that the features of the collision 
mechanics discussed above would be suppressed if 
only colin ear collisions were considered. Thus the one­
dimensional approximation sometimes used in theo­
retical analyses of this nature presents a picture which 
is very different from what actually is the case for both 
homo nuclear and heteronuclear molecules. 

For a collision to be reactive (consider recombin­
ation), the molecule must start in a free state and end 
in a bound state. The corresponding energy changes 
must be such that H-B<O, where H is the Hamil­
tonian of the molecule, and B is the height of the rota­
tional barrier. Figure 6 shows a distribution plot of 
I1H and I1B for 101 reactive trajectories out of the 300 
trajectories sampled for HCl+Ar at 2500 OK on the 
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:FrG. 6. Distribution plot of reactive trajectories in the [toH, 
toB] plane. The average angular distributi~n and limits of one 
standard deviation are indicated by dashed hnes. 

surface S(O). It is apparent that recombination (the 
change from H-B>O to H-B<O) is achieved by two 
equally important mechanisms, i.e., reducing Hand/or 
increasing B. Our work on homonuclear molecules (to 
be reported separately), on the other hand, sho:"s that 
most recombinations are achieved by reducmg H. 
This furnishes further evidence that rotational energy 
transfer in asymmetric molecules plays a relatively 
important part in chemical reactions. The energy 
transfers /lH and I1B for the three trajectories shown 
in Fig. 5 are indicated by the filled points in Fig. 6. 
They represent different ratios of I1B/I1H. 

The calculations presented in this paper are for one 
system (Ar+HCl) and over a limited (high) temper­
ature range (2500-50000 K). Work on other diatomic 
molecules is in progress which will cover the high­
temperature dissociation region and the lo.w-temp.er­
ature recombination region. A number of mterestmg 
questions can be answered by such calculations; 
e.g., what is the physical interpretation of the param­
eters a and /3 involved in the equilibrium transition 
rates and what will be the contribution from the 
"com'plex" mechanism to the overall recombination 
rate coefficient at low temperatures? In any event, the 
agreement between the theoretically predicted dis­
sociation rate coefficients and experimental measure­
ments for the case of HCl+Ar presented here un­
doubtedly provides another successful test for the 
classical modified phase-space theory of reaction rates. 

* This research was supported by the Advanced Re~earch 
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This paper extends a previous demonstration [Hemmer and Stell, Phys. Rev. Letters 24, 1284 (1970) ] 
showing that for a system in which the pair potential has a hard core plus a negative part, softening the 
hard core can produce a second transition if a first already exists. Detailed analytic and numerical results 
for one-dimensional continuum fluids are given, and our discussion of the lattice gas is further developed. 
In particular interactions that are repulsive over next-nearest neighbor cells as well as nearest-neighbor 
cells are considered, and it is rigorously shown that as many as four first-order phase transitions can occur 
for such potentials, even in one dimension. The relevance of our work to certain features found in real 
systems (e.g. the possible breakdown of the law of rectilinear diameters, and isostructural solid-solid 
transitions) is also discussed, as is the novel critical behavior to be expected of certain two- and three­
dimensional lattice systems. 

I. INTRODUCTION 

In a previous notel we showed that for a system in 
which the pair potential has a hard core plus a negative 
part, softening the hard core can produce a second 
transition if a first has already occured. Our demon­
stration consisted of a general plausibility argument 
for the occurrence of the second transition in lattice 
gases, plus explicit computations verifying that the 
second transition (and further transitions) can be 
induced in one-dimensional continuum fluids by 
softening the potential core. In this paper we extend 
and elaborate our earlier work. 

Section II contains detailed results, both analytic 
and numerical, for one-dimensional fluids with nearest­
neighbor repulsion and weak long-range attraction. 

In Sec. III we augment the general plausibility 
arguments of Ref. 1. In particular we extend our 
discussion to the case in which the positive pair poten-

tial acts on next-nearest neighbor particles as well as on 
neighboring particles, and we rigorously compute the 
ground-state energy for such a system in one dimension. 
The plausibility argument and the exact computation 
give compatible results; they show that in one dimension 
as many as four separate transitions occur for certain 
values of the strength parameters of the potential. We 
also discuss the new features that one should be 
prepared to meet as the dimensionality is increased, 
and we speculate on the possible existence of a novel 
form of tricritical point for v~2. 

In Sec. IV we note the relevance of our results to the 
general problem of formulating thermodynamic homo­
geneity assumptions (in the sense of Widom2

) in a 
way that takes due account of the lack of exact sym­
metry in a fluid about its critical density pc. We also 
briefly discuss the possibility that our work is pertinent 
to solid-solid transitions that preserve crystalline sym­
metry, such as are found experimentally in Ce and Cs. 
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