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High Reynolds number flow in a moving comer 
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The problem of a piston moving in a cylinder is studied experimentally using 
flow visualization techniques. A vortex motion is observed a t  the piston face and 
cylinder wall interface as the cylinder wall moves toward the piston. Non- 
dimensional scaling parameters for the vortex size and stability are determined 
and semi-empirical theories for the size of the vortex are presented. 

Introduction 
When one plane moving in the direction of its normal slides over another plane 

which is perpendicular to it, a fluid motion is created in the corner between the 
two planes. This situation is observed whenever a piston moves in a cylinder or a 
blade scrapes fluid from a surface. Batchelor (1967, pp. 224-227) has treated this 
problem for the case of negligible inertial effects. However, for the practical 
problems of a water pump or a piston moving in the cylinder of an internal com- 
bustion engine, inertial effects are dominant when r % vIU, = 0.001 cm, where r 
is the distance from the piston-cylinder wall interface. Therefore, the greater 
portion of the flow field in the aforementioned problems is inertia dominated. 

To simulate such flows an experiment was designed with a piston cylinder 
geometry and with water as the working fluid. I n  this investigation two types of 
flows were observed: a sink flow as the cylinder wall retreated from the piston 
and a spiral vortex flow as the cylinder wall moved toward the piston (see figure 1) .  
In the present work only the latter will be investigated to determine the relevant 
parameters governing the size and stability of the vortex motion. Other vortical 
flow problems involving the roll up of cast-off vortex sheets have been studied 
extensively. Alexander (1965) presents a unified treatment of these problems 
and an extensive bibliography. 

An experimental apparatus and techniques 
A piston-cylinder geometry was chosen to eliminate surface and end effects 

and to facilitate construction of the apparatus. Figure 2 shows a schematic 
diagram of the test section where the pistons were fixed and the cylinder wall 
allowed to move with the desired velocity. The fixed piston reference frame 
served two purposes. First, it permitted the movement of the cylinder wall 
which had less inertia than the working fluid. Secondly, it allowed the camera to 
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remain tixed which facilitated the photography. It was necessary to build a 
square tank filled with water about the cylinder wall so that the flow could be 
viewed without distortion. The test section was built entirely out of plexiglass, 
and the wall velocity was controlled by a constant speed motor. The four wall 
velocity profiles shown in figure 3 were investigated where a positive wall 
velocity denotes movement toward the piston. Only the velocity profiles denoted 
by 1, 3 (for t < &T), and 4 (for iT < t < T) will be discussed; the other profiles 
result in sink-type flows. 
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FIGIJKE 1. Sketch of sink arid vortex flow 

Two t,echniques werc used to view the flow. The first utilized a dilute solution of 
xluminium flakes in water. A beam of light was passed through a diameter of the 
cylinder in order to  visualize a plane of the flow. The aluminium flakes that were 
in motion aligned themselves with the shear whereas the flakes that were not in 
motion orientated themselves randomly, thus allowing the observation of the 
motion in this plane. The second technique consisted of placing a strip of dye 
along the bottom of the cylinder and simply watching the motion of the dye as 
the wall moved. A movie camera was used to record the motion in both of these 
cases. Figure 4 (plate 1 ) shows typical flows using these techniques. Measurements 
of the vortex area and shear area are accurate to 25 yo, and measurements of the 
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Reynolds numbers are accurate to 10 yo. The principal sources of error are in 
determining the bounding area of the vortex and in determining the exact 
position of the cylinder wall as a function of time. 

Z=14cm, L=33cm, D=9.5 cm 
FIGURE 2. Schematic of test section. 

FIGURE 3. Velocity profiles. 

Semi-empirical theories 
It was observed that the characteristic size of the vortex was small compared 

with the diameter of the cylinder, the distance between the pistons, and the 
length of stroke. Hence, the vortex area can be expressed as 

A = f(U,, x, t ,  T , p , p ) ,  
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where U, is the wall velocity, X is the length of stroke, t is the time, T is the 
period, ,u is the viscosity of the working fluid, and p is the fluid density. Forming 
the relevant dimensionless groups A / X 2  can be expressed as 

The non-dimensional group J(vt)/U,,T is the ratio of the pressure gradient pro- 
duced by an accelerating wall (ap/ax unsteady M pU,/T) to the pressure gradient 
produced by flow turning the corner (aplaxcorner = p U i / J ( v t ) ,  where J ( v t )  is 
assumed to be the radius of curvature for the flow in the corner). In  this work 
J(vt)/U,,T zz 0.03 1, indicating that for flow in the corner, moving the cylinder 
wall is equivalent to moving the piston for both steady and unsteady wall 
velocities. If the difference between the boundary-layer structure with an un- 
steady wall velocity and that with a steady wall velocity is not very important 
compared to the flow in the corner, then in determining the gross features of the 
flow, e.g. A / F ,  the flow should have a quasi-steady character; therefore, 

For a constant wall velocity the vortex area in the stable flow rdgime was 
assumed proportional to the boundary-layer area A ,  scraped up in a distance X ,  

where S* is the displacement thickness for the problem of an impulsively started 

where Cis a constant to be determined from experiments. In the turbulent vortex 
flow rdgime, an elementary entrainment theory was proposed, where the rate of 
change of the vortex area was assumed proportional to the product of the exposed 
perimeter of the vortex and the velocity difference between the vortex flow 
and the stationary fluid. The velocity difference is approximated by the wall 
velocity, and the exposed perimeter is taken as J(nA). The equation governing 
the rate of growth of the vortex area is given by 

dA 
dt - = ..C{,J(nA), 

whcrc a is the entrainment parameter determined empirically. Tritegrating this 
equation. the expression for the area becomes 

and, therefore, A / X 2  is constant. 



High Reynolds number $ow in  a moving corner 253 

Discussion of results 
It was observed that stable, transitional, and unstable flows (figure 4, plate 1) 

were present. Figure 5 shows this transition from stable to unstable vortex flows 
is a function of U,X/u, and indicates that, below values of U,Xlv = 12.5 x 103, 
the vortex flow is stable, and, above U s l u  = 17.5 x lo4, the vortex flow is fully 
turbulent. The parameter U, in figure 5 was used simply to spread out the data 
thus facilitating evaluation of critical Reynolds numbers. For the stable flow 
regime, figure 6 shows that the area of shear layer A, that forms the vortex is 
essentially the area of the boundary layer A, scraped up in a distance X. Figure 6 
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FIGURE 5 .  Flow character vs. Reynolds number. 
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also shows that the vortex area A is proportional to the boundary-layer area 
A,. The experimental data for the vortex area is correlated when it is non- 
dimcnsionalized with respect to the square of the stroke and plotted as a function 
of the local Reynolds number U,XIvas is shown in figures 7 and 8 for the constant 
velocity profiles and sinusoidal velocity profiles, respectively. From figures 6 and 
7 the constant C defined by (3) is determined and has a value of 1.35. Equation 
(3) is plotted on figures 7 and 8 and is found to correlate the data in the stable 
regime within experimental error. Hence, the flow in this region can be considered 
as quasi-steady. Equation (4) is plotted on figures 7 and 8, and correlates the data 
for the constant velocity case when a = 0.10. However, the data for the sinusoidal 
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FIGURE 6. Ratios of vortex area and shear area to boundary-layer area. 
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FIGURE 7. Ratio of vortex area to  stroke squared wa. Reynolds number for constant wall 
velocities. U ,  cm/sec: 

0 7.1 0 16-0 A 34.0 0 52.3 
0 7.1 0 25.6 0 35.0 D 58.3 
0 15.7 0 30.1 b 50.1 
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case lie approximately 25 yo lower than that of the constant velocity case. This is 
due to the more complicated flow field produced by using an unsteady wall 
velocity profile which leads to the breakdown of the assumption that the velocity 
difference across the shear layer can be taken as constant a t  an instant of time. 
A / X 2  can still be considered constant, and the entrainment parameter a! has the 
value 0.087 as determined from figure 8. It should be noted that all the experi- 
mental data can be correlated with a 50 yo accuracy if the intermediate value of 
a! = 0.096 is used. 
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FIGURE 8. Ratio of vortex area to  stroke squared vs. Reynolds number for sinusoidal wall 
velocities. GTfO cm/sec : 

0 10.5 sin 2.0t A 7.6 sin 1.41 b 1034 sin 19.11 -62.8 sin 11.41 
0 15.7 sin Z.9t b 67.8 sin 12.21 0 - 11.7 sin 2.18 - 51.1 sin 12.U 
0 16.8 sin 34 t  0 45.5 sir1 10.88 0 - 15.2 sin 2.81 0 -96.1 sin 17.61 
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(a )  (b )  

FIGURE 4. (a) Stable, transitional, and turbulent vortex flow. ( b )  Growth of vortex for a 
constant velocity. 
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