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Stand-Off Distances on a Flat Flame Burner 
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and 
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For a given stand-off distance of a laminar flame on a porous metal burner, it has been shown both experi- 
mentally and theoretically that there exists two solutions, a low-speed flame and a high-speed flame. For 
small enough stand-off distance there is no solution. The minimum stand-off distance is identified as the 
quasi-steady approximation to the extinction length for flames quenching in flows perpendicular to a heat 
sink. 

Measurements of flame speed, maximum flame temperature, and stand-off distance have been correlated 
for hydrogen, ethylene, and methane flames by a Peclet number dependent only on the ratio of the heat of 
combustion to the heat loss. The correlation agrees quantitatively with solution of one-dimensional flame 
equations where a Dirac-delta function models the reaction rate. 

I. INTRODUCTION 

This paper presents results of  an experimental  and 
theoretical study of  non-adiabatic laminar flames 
[1].  It extends an earlier work [2] which pre- 
dicted that  for sufficiently large stand-off distances 
of  a flame on a flat flame burner there would be 
both  a high-temperature and a low-temperature 
solution. It was also predicted that  there would be 
a minimum distance for which solutions exist. In 
the present work those predictions are experi- 
mentally verified and the earlier analysis is im- 
proved so that  quantitative agreement is achieved 
between theory and experiment.  

Both studies were motivated by and contribute 
to the practical problem of  modeling the hydro- 
carbon and carbon monoxide emission from 
internal combustion engines. The analysis is 

relevant to the problem of  a transient flame 
propagating towards a wall and extinguishing at 
the quench distance. The minimum stand-off 
distance is a quasi-steady approximation to that 
quench distance. A complementary analysis of  
transient flame quenching has been made by 
Kurkov and Mirsky [3].  The quench distance 
computed by the quasi-steady model described 
later and their analysis is about the same. An 
important  difference appears, however, in the 
amount  of  unburned fuel left at the wall after 
quenching has occurred, the quasi-steady model  
predicting nearly twice as much fuel in the quench 
layer. 

The problem analyzed is a one-dimensional 
laminar flame with heat loss at the cold boundary.  
The energy and diffusion equations solved are 
those given by Spalding [4] with a Dirac-delta 
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function modeling the reaction rate. The analysis 
relates the flame speed, the burned gas tempera- 
ture, and the stand-off distance. The experiments 
were designed to measure these three quantities. 

1 I .  T H E O R Y  

Assuming that all species have equal and constant 
specific heats at constant pressure, the energy 
equation for steady laminar flame propagation is 
taken to be [4] 

d f x d T  ~ dT 
- -  dx + dx [_ d r _ ] - p , , S , , c p -  p u S u q ~ ( D - x ) = O  

(1) 

where the coordinate system is chosen so that the 
porous burner surface is at x --- 0 and the flame is 
at x ---D. The symbols in Eq. (1) are defined below: 

?, - thermal  conductivity 
T -temperature 
p -density 
Su -f lame speed 
q -enthalpy of combustion per unit mass 
6 (D - x)-Dirac-delta function with unity integral 

Subscripts u and b refer to the unburned and 
burned states, respectively. The boundary con- 
ditions are: 

7"(0) = 7-u 

dT 
T(°°) = Tb dx (oo) = 0 (2) 

In dimensionless variables the energy equation 
may be written as: 

d2T d¢ 
- -  - -  - -  + 6(Pe -- ~) = 0 ( 3 )  

d~ 2 at  

where in terms of the adiabatic flame temperature 
Tb o = T~, + q/c,, 

T--T~  

Tb ° - T u  

fo x drl = p,,S,,cp - -  

fo D d r '  Pe = puSucp k 

The space variable ~ is a Peclet number based on 
distance x from the wall and Pe is the Peclet 
number based on the stand-off distance D. The 
boundary conditions are: 

r(0) = 0 

d~- 
r(°°) = rb ~ (oo) = 0 (4) 

The solution to Eq. (3) subject to the boundary 
conditions (4) is 

( e x p  (~) - 1 

rb \exp  (Pe) -- 1/ 0 < ~ < Pe 

rb ~ ~> Pe 

(5) 

and the Peclet number based on stand-off distance 
is 

Pe = In (1 _ % ) - 1  = ln  \Tb  ° (6) 

A similar result has been derived by Kihara et al. 
[5] using an ignition temperature model. 

The characteristic analysis for perpendicular 
flow presented previsouly (2) is, according to Eq. 
(6), strictly valid only for small Peclet numbers, in 
which case the left side may be integrated approxi- 
mately and the right-hand side expanded into a 
Taylor series. The zero order approximation is 

Pe ---- PuSucp----------D_~- Tb -- Tu (7)  

~,(D) T~ o _ r ~  

identical to that given in the previous paper. 
The effect of chemical reactions on the stand- 

off distance given by Eq. (6) is entirely contained 
in the laminar flame speed, and since this can be 
measured experimentally, the inclusion of a 
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detailed chemical kinetic model is unnecessary. 
However, to check the senitivity of the results to 
i'mite reaction rates, a more general analysis was 
carried out [1] in which the heat release rate was 
modeled by an overall Arrhenius rate equation. 
The results showed that Eq. (6) is a good approxi- 
mation provided the E/RTb ° 1> 7, where E is a 
characteristic activation energy and R is the gas 
constant. 

To proceed further, it is necessary to know the 
dependence of the flame speed on the flame tem- 
perature. Kaskan [6] has shown that the flame 
speed on porous metal burners often correlates 
empirically as 

s o  =exp (8) 

where Su ° is the adiabatic flame speed and E A is 
an apparent activation energy. Combining Eqs. 
(6) and (8) yields a Peclet number based on the 
adiabatic flame speed and the stand-off distance 

fo D 1 Pe o = p~SuOcv --dx 

I E A (  1 1 )1 { T b ° - T u )  
=exp  ~-~ Tb Tb ° In \Tb ° Tb 

(9) 

Equation (9) can be used for computing stand- 
off distance given the adiabatic flame speed, the 
apparent activation energy, and the burned gas 
temperature. A typical solution of Eq. (9) is 
shown in Fig. 1. The Peclet number is a U-shaped 
function of temperature. It can be seen that for 
sufficiently large distances there is both a high- 
temperature and a low-temperature solution. 
There is also a minimum distance for which 
solutions exist. 

The physical reason for this behavior is that for 
temperatures near the adiabatic flame temperature 
only a small amount of heat needs to be trans- 
ferred to the burner to maintain a steady-state 
energy balance, hence the stand-off distance will 
be large. As the flame temperature decreases, the 

heat loss per unit mass increases monotonically, 
so that the heat transfer to the burner must also 
increase and the standoff distance must decrease. 
However, at low enough temperatures, the energy 
generation decreases more rapidly with flame 
temperature than the heat loss per unit mass 
increases, so that the heat transfer to the burner 
must decrease and the stand-off distance must 
increase. 

To compute the minimum stand-off distance, 
which is the quasi-steady approximation to the 
quench distance D 1 for the perpendicular flow, 
one must determine the temperature at which 
~D/OTo = 0 so that by Eq. (9) 

Tb O~ EA Tb 1 
~ - - -  . =0 

- -  - -  T b  OTb 2RTb Tb ° Tb ln (Tb°  
| / \ Tb ° T,, 

(10) 

where 

' fo ° l  
The apparent activation energy of most flames is 
large enough that an asymptotic solution to Eq. 
(10) is adequate. The zero order equation for the 
burned temperature at quenching Tb * is 

{rb ° - rb*~  2Rrb ° (11) - e 

The solution of Eq. (11) is given in Fig. 2 for the 
special and most practical case Tb ° >> Tu. Com- 
parison to an exact solution can be made with 
Fig. 1, which shows the Peeler number is minimum, 
for EA/2RTb 0 -- 5, when (Tb 0 -- Tb)/Tb ° = 
0.072. The corresponding value obtained from Fig. 
2 is (Tb ° -- Tb)/Tb ° = 0.076. Note that for large 
EA/2RTb ° it takes very little heat to quench a 
flame so that temporal temperature changes during 
flame quenching are small and a quasi-steady 
approximation is valid. 

Another parameter of interest in modeling 
hydrocarbon emission from internal combustion 
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Fig. 1. Stand-off Peclet number based on adiabatic flame speed as a function of flame 
temperature. 

engines is the mass of  fuel left at the wall when the 
flame is quenched. To compute this parameter, a 
conservation equation for the fuel mass fraction 
CA is introduced: 

d / dCa\ dCA 
= 0  

(12) 

where D is the diffusion coefficient for the fuel. 
Equation (12) can be derived when the binary 
diffusion coefficients of  all pairs of  species are 
equal or by postulating that all diffusion velocities 
obey Fick's law [7]. 

In dimensionless variables, Eq. (12) is: 

1 d2y dy 
8(Pc -- ~) = 0 (13) 

where L = )~/pl)cp is the Lewis number and y = 
CA/CA u is the normalized fuel mass fraction. The 
boundary conditions to impose on the fuel are: 

y(oo) = 0 d~ (oo) = 0 (14) 

and the solution is 

y = 1 - exp [L(~ - Pe)] (15) 
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Notice that y(0)  =~ 1 and (dy/d~)(O) 4= 0; rather 
y(0)  - (l/L)(dy/d~)(O) = 1, which shows that the 
reactant mass flux fraction at the burner exit 
plane is unity but that the composition is not 
pure reactants. Thus products are diffusing into 
the burner at the same rate that they are con- 
vected out. This is equivalent to the flame holder 
model of  Hirschfelder et al. [8].  

The mass of  fuel per unit wall area, assuming 
pX = PuXu is 

m q ~ fo D CA ,, X______~ pCa dx= Sucp 

× P e - - L  [1 - - e x p  (--LPe)] 

= P~CA=D x - - ~ e [ 1  -- exp ( -LPe) I  

(16) 
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The mass of fuel in a quench layer is computed by 
evaluating the Peclet number and flame speed, 
Eqs. (6) and (8), at the temperature of quenching 
T b*. Such calculations have been done under the 
conditions specified by Kurkov and Mirsky [3] for 
comparing their transient solution to the present 
quasi-steady model. When differences of definition 
are accounted for, good agreement is realized for 
the Peclet number but the quasi-steady model 
predicts about 1.75 times as much fuel as the 
quench layer. 

III. EXPERIMENTS 

The theoretical analysis relates the flame speed, 
the burned gas temperature, and the stand-off 
distance by a Peclet number dependent only on 
the ratio of the heat of combustion to the heat 
loss. The experiments were designed to check that 
relationship. The basic apparatus used to study the 
stand-off distance experimentally is a porous 
metal flat flame burner. The design is similar to 
Kaskan's [6] with three important differences. 
One, the 5.1-cm diameter burner sits atop a 15- 
cm diameter by 46-cm long plenum that creates a 
steady uniform velocity upstream of the porous 
metal. Two, the cooling coils were located in the 
middle of the porous plug, seven diameters from 
the exit plane of the burner, in order to minimize 
velocity nonuniformities at the exit plane. The 
velocity of gas issuing from the burner in the 
absence of combustion was measured with a hot- 
wire anemometer and found to be uniform over 
the burner surface to within -+5%. The third 
difference was the inclusion of an outer annulus of 
porous metal through which nitrogen flowed. This 
served to eliminate entrainment of air by the 
burned gases downstream of the flame and im- 
proved the flame stability for low-velocity flames, 
so that a stabilizing screen ia the burned gases was 
not necessary. 

The temperature of the exit plane of the 
burner was measured by two 250-/~ iron-con- 
stantan thermocouples in 1.6-mm diameter protec- 
tive sheaths imbedded in the porous metal 1 mm 
from the surface. One was located at the center 
and the other at the edge of the burner. The 
burner temperature was controlled by varying 

either (or both) the temperature of the cooling 
water or of the nitrogen. The two thermocouple 
temperatures differed by less than 30 K. This is an 
important advantage of Kaskan's design over the 
edge cooled burner discussed by Kihara et al. [5]. 

The flow rates of fuel and air were controlled 
by critical flow orifices calibrated by either a 
mercury-sealed piston diplacement meter or a 
liquid displacement technique. The reactants were 
premixed in a mixing chamber upstream of the 
plenum. 

Flame temperatures were measured by moni- 
toting the radiation emitted from a fine wire held 
in the flame, a technique called hot-wire pyrom- 
etry [9]. The hot-wire pyrometer and the burner 
are shown in Fig. 3. A 25-micron Pt-13 percent 
Rh wire was held in tension parallel to the burner 
surface by the spring loaded probe shown in the 
figure. This was the smallest wire that could be 
held in tension and survive in the flame for many 
hours. A thermocouple was not used, because the 
welded junction of fine wire thermocouples is 
twice the wire diameter; hence spatial resolution 
would have been reduced by a factor of two. The 
wire was coated with a film of quartz by immer- 
sion into the hot gases from a flame in which a 
small amount of hexamethyldisiloxane had been 
burned [6]. The diameter of the wire after coating 
was measured under a microscope and typically 
was 35 /l. The purpose of the coating is to kill 
catalytic heating of the wire. 

An image of a 3-ram long section of the wire 
was focused by a cylindrical lens on the entrance 
slit of a photomultiplier. The image on the cathode 
is diffuse and covers the whole photosensitive area. 
An orange filter was used to minimize flame 
radiation seen by the photomultiplier. With an 
electrically heated wire it was determined that the 
overall sensitivity of the hot-wire pyrometer varied 
less than 2% over a wire translation of 5 mm. 

The photomultiplier signal V depends on wire 
temperature T w to a power like 14. The calibra- 
tion curve is given by: 

V = ATw 7/4 exp (--BTw -112) (17) 

where A and B are the calibration constants that 
are discussed in reference [9]. Because the wire is 
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radiating, its temperature is slightly less than the 
gas temperature. To estimate heat transfer to the 
wire the following correlation of  Nusselt number 
N= and Peclet number Po based on wire diameter 
was used [10] : 

2 
N u / 4 . 4 9 2  \ (Po ~ 0 )  (18) 

In \--pT-o / ( } 

This gives a radiation correction to the burned gas 
temperature: 

eoTw4dln ( 4.492~,b 
Tb -- Tw = 2Xb \puSucpb-~d~l 

(19) 

where e is wire emissivity, o is the Stefan-Boltz- 
mann constant, and d is the wire diameter. The 
emissivity of  the coated wire is e = 0.22 (6). The 
equilibrium burned thermal conductivity and 

specific heat were calculated by the computer 
program of  Svehla and McBride [11] at the wire 
temperature. These corrections were typically 
50K.  

The temperature profile in the flame was 
measured by moving the cantilever probe down to 
the burner surface. The ceramic posts of  the probe 
were designed to slip when contact occurred with 
the burner surface. Screwing the micropositioner 
down until the posts slip establishes the zero 
coordinate. The wire is then moved away from the 
burner and an x-y  recorder slaved to the micro- 
positioner plots the photomultiplier signal versus 
wire position. The measurement is usually repeated 
at four different sensitivities on the x - y  recorder, 
in order to locate the inflection point of  the tem- 
perature profile (the stand-off distance) with 
precision. The repeated measurements also serve to 
establish an average reading for the zero coordi- 
nate. To account for the probe's influence on the 
apparent flame position, five wire diameters have 
been added to the distance measurements [12].  
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The inflection point of the temperature profile 
was chosen to define the stand-off distance instead 
of the maximum because the maximum occurs in a 
region of slowly varying temperature, so that its 
position is determined in part by the radiative 
losses from the burned gases and in part by the 
small variations in detector sensitivity~ with wire 
position. 

An intensity distance diagram is shown in Fig. 4 
together with the wire temperature distance plot. 
It is clear from these curves that the zero coordi- 
nate is accurate only to -+0.1 mm. Note that the 
reaction zone thickness is not small compared to 
the stand-off distance. Even modeling the heat 
release by an overall Arrhenius rate equation does 
not admit this possibility [ 1 ]. The problem is that 
there are many reactions characterizing the heat 
release. In a hydrocarbon flame, one-half to two- 
thirds of the heat release is associated with the 
formation of CO and H20 in a zone labeled the 
primary reaction zone by Fristrom and Westen- 

berg [12]. There is a secondary reaction zone 
where CO burns up, recombination takes place, 
and the remaining heat is released. In a hydrogen 
flame, one expects most of the heat release to be 
by three-body recombination reactions, so what 
was the secondary reaction zone in a hydrocarbon 
flame is the primary zone of heat release in a 
hydrogen flame. These considerations are not 
important for computing stand-off distance, 
since the experirnental results that follow indicate 
that most of the heat release of all these flames is 
fast enough to be characterized by a single tem- 
perature T b. 

Two sets of experiments were performed: one 
at constant equivalence ratio and one at constant 
flame speed. For each flame, the wall temperature 
was held constant. Because the cooling coils were 
22 mm below the exit plane of the burner, the 
surface temperature was a strong function of con- 
ditions and could be varied by only -+25 K. The 
conditions studied were chosen to keep that 
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temperature constant so that only one parameter 
was varied at a time. A better burner would use 
smaller cooling coils. 

The data at constant equivalence ratio are given 
in Figs. 5 and 6. In agreement with theoretical 

prediction, it was found that for a given stand-off 
distance based on the inflection point in the tem- 
perature profile there is indeed both a high-tem- 
perature and a low-temperature solution. These 
results should not be confused with Spalding's 
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prediction [13] that in the presence of distributed 
heat loss and heat release there are two solutions 
for a given heat loss per unit mass (i.e flame 
temperature); rather there is a high-temperature 
and a low-temperature solution for a given heat 
loss to the burner. 

Similar to other reports [6, 14, 15],instabilities 
and three-dimensional phenomena have been 
observed. For flame speeds comparable to velocity 
fluctuations in the room, a flickering flame was 
observed. A further reduction in speed caused 
extinguishment. 

For hydrocarbon-air flames a corrugated or 
wrinkled flame appeared for temperatures slightly 
larger than To*. If the flow rate is increased 
further the temperature becomes independent of 
flame speed, and eventually the flame is blown 
off. The wrinkling mechanism can be explained by 
arguing that the stand-off distance-temperature 
relationship illustrated by Fig. 1 is valid for any 
streamtube. It can be seen that for nearly adiabatic 
flames, the small velocity (flame temperature) 

variations from streamtube to streamtube cause 
large variations in local stand-off distance. 

The hydrogen used in these experiments had 
enough hydrocarbon impurities so that in a dark 
room the flame was luminous. It appears that the 
high-temperature solution for this flame is un- 
stable, since a cellular structure was observed for 
temperatures greater than the temperature T b* of 
minimum stand-off distance. The maximum tem- 
perature of these flames increased monotonically 
(although not linearly on the Arrhenius plot) 
with flame speed up to the highest speed meas- 
ured, about twice the apparent adiabatic flame 
speed. The appearance of cellular flames indicates 
the occurence of selective diffusion. Since these 
cells are three dimensional, temperatures larger 
than the equilibrium adiabatic flame temperature 
could be explained by shifts of composition due to 
selective diffusion. 

The hydrogen-air flames also showed anom- 
alous behavior regarding catalytic heating of the 
wire. For bare wires, unlike hydrocarbon flames 
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where only one maximum of  wire temperature is 
observed, there were two, the largest of  which 
occurs is the preheat zone. 

The stand-off distance as a function of  equiv- 
alence ratio at constant flame speed is given in 
Fig. 7. The stand-off distance as a function of  
equivalence ratio has a minimum near ¢ = 1, 
because the heat released in the reaction zone is a 
maximum at this point.  The stand-off distance is 
determined by a balance of  conduction and con- 
vection, and since the flame speed is held constant 
the stand-off distance must get smaller as the heat 
released increases. 

The lean limit at these speeds appears deter- 

mined by the onset of  Taylor instabilities in the 
burned gases which are characterized by the 
formation of  holes in the flame [14]. The rich 
limit for methane was caused by flow-off, whereas 
for ethylene measurements at ¢ > 1.8 could not  be 
made because radiating soot particles masked the 
wire. Another  instability appeared for the methane- 
air flame. At equivalence ratios of  ¢ = 1.2, 1.3, and 
1.4, surface waves travelled along the flame causing 
pressure fluctuations that were audible. The dis- 
turbances were small enough, however, that the 
mean stand-off distance has been presented in the 
figures. 

According to the theory for all flames with a 
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dimensionless activation energy E / R T ~ ,  ° greater 
than about 7, there should be a univelsal plot of 
Peclet number versus the ratio of the heat of  com- 
bustion to the heat loss. To test the theory an 
experimental Peclet number has been defined as: 

p,,Su(c.. + cpb)D 
Pe = (20) 

Xu + Xb 

where the thermochemical and transport data 
needed for the definition have been computed 
using the program of Svehla and McBride [ 11]. 

Figure 8 shows quantitative agreement between 
the theoretical Peclet number and the experi- 
mental data. Indeed. the gross behavior of the 
flames studied is described by a single curve which 
is the logarithm of the ratio of heat of  combustion 
to the heat loss. The measurements are not accu- 
rate enough to study the small deviations that may 
be due to the finite heat release zone. It is clear 
that the heat flux at the wall normalized by the 

temperature rise, the stand-off distance, and the 
thermal conductivity of the burned gases is not a 
constant as assumed previously [1]. 

For values of ( T b  ° -- T u ) / ( T b  ° - T b )  greater 
than about 10 there are large deviations from the 
plot caused by the smallness of the quantity 
Tb ° - Tb. These errors are just large enough that 
they cannot be dismissed as only experimental 
uncertainty. Rather it appears that hydrocarbon 
flames do not burn to thermodynamic equilib- 
rium. For example, any carbon monoxide in the 
products that is neglected in computing the 
adiabatic flame temperatures causes Tb °, hence 
Tb ° - Tb, to be overpredicted. 

Finally, the correlation works for the hydrogen- 
air flame despite the fact that the specific heat and 
diffusivity of hydrogen are an order of magnitude 
larger than those of the other stable species in the 
flame. The theory is adequate because there is so 
much nitrogen in the flame that very little of the 
sensible enthalpy is tied up in the hydrogen. The 
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assumption that all species in the flame have equal 
specific heats and diffusivities is not  expected to 

be valid in a hydrogen-oxygen flame. 

IV. CONCLUSIONS 

1. The Peclet number based on stand-off 
distance depends only on the ratio of  the heat 
combustion to the heat loss provided that (1) the 
dimensionless activation energy /~ = E/RTb is 
greater than about 7 and (2) that when hydrogen 
is a reactant it  carries little of  the sensible enthalpy.  

2. There is a minimum stand-off distance that,  
because so little heat is required to quench a flame, 
is a good approximation to the quench distance 

for an unsteady flow. 
3. An expression has been derived for the fuel 

per unit area in a quench layer. It needs to be 
checked experimentally because the diffusion of  
products into a flat flame burner has never been 

observed. 

The authors are grateful to the General Motors 

Corporation for  funding this work. 
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