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I. Introduction

Within the framework of classical mechanics Monte Carlo trajectory
calculations (Wall er al., 1961) provide an exact method for investigating
reactions in atomic and molecular systems. They constitute, in effect, nu-
merical experiments in which the equations of motion for a system are inte-
grated using digital or analog computers to determine the course of the
reactions for prescribed sets of initial conditions. The results of the experi-
ments can be recorded and used to calculate cross sections and rate constants
in exactly the same manner as in real experiments.

To carry out a Monte Carlo calculation for a given atomic or molecular
system one needs to know the interaction potential for the system. Although
in principle this can be obtained from quantum mechanics, reliable potential
functions are only available for a few relatively simple systems, and it is
usually necessary to assume a parametric form for the interaction. In cases
such as H* +e+e¢ or H+ H + H, where the interaction potential is
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40 J. C. Keck

known, the comparison between Monte Carlo calculations and the corre-
sponding experimental results provides a critical test of the validity of the
classical approximation for the system under investigation. In most other
cases, particularly those involving heavy particles, the uncertainty resulting
from the use of classical mechanics is small compared to that introduced by-
assuming the interaction potential; a comparison of Monte Carlo and
experimental results provides a method for determining the potential para-
meters.

Numerous investigations of atomic and molecular collisions have been
made using Monte Carlo methods. [References to this literature can be
found in recent papers by Morokuma and Karplus (1971), Mok and Polanyi
(1970), Kuntz et al. (1970), and Bunker and Pattengill (1968).] Most of these
have involved unimolecular decay or bimolecular exchange reactions of
the type

AB —— A+B (D
and
AB+C — A+ BC (2)
where the particles A, B, and C have been either ions, atoms, or molecules.
By contrast, relatively few applications of the method to excitation or dis-
sociation reactions of type :
AB+C — AB*+C 3)
and
AB+C —— A+B+C “@
have been reported (Keck, 1962; Woznick, 1965a; Mansbash and Keck,
1969; Abrines ef al., 1966; Abrines and Percival, 1966). The reason for this
is undoubtedly duc in part to the fact that the usual impact parameter
sampling technique employed in the calculations for exchange reactions is
extremely inefficient when applied to excitation reactions.

To circumvent this difficulty the author has developed an “inside out™
sampling technique based on the variational theory (Keck, 1967) of reaction
rates. This technique involves selection of initial conditions inside the colli-
sion complex, followed by integration of the equations of motion both
forward and backward in time to obtain the complete history of a collision.
The most important advantage of sampling inside the collision complex
is that the reaction probability for excitation and dissociation can be increased
sufficiently to make Monte Carlo calculations for these processes relatively
efficient.

The purpose of this article is to present a systematic discussion of Monte
Carlo methods for studying thermal excitation and dissociation in atomic
and molecular systems and to review the results that have been obtained.
In the following section we shall consider first the description of thermal

1




[}

MONTE CARLO TRAJECTORY CALCULATIONS 41

excitation and dissociation processes by means of master equations and
equivalent diffusion equations. This will be followed by a discussion of
Monte Carlo techniques for obtaining the transition kernels and transport
coefficients required for solution of these equations. Finally we shall discuss
the numerical results that have been obtained for molecular and atomic

systems.

II. Master Equation

In this paper we are concerned with three-body excitation and dissociation
reactions of the type shown in Egs. (3) and (4). We assume that the inter-
action potential is known and that the motion of the particles can be described
using classical mechanics. We further assume that the translational and
rotational degrees of freedom have a Boltzmann distribution. Under these
conditions it has been shown by Keck and Carrier (1965) that the relaxation
of the molecules AB may be described by a master equation of the form

dX(e, t)

ot

N(e)

= [ RE, X, 1)~ XCe, D) i
-8

+ R(c, &)[X(c0, 1) — X(e, 1)] (5)

where 7 is the time, ¢ = (E — B)/kT is the energy relative to the top of the
rotational barrier in units of k7, 6 = D/kT is the dissociation energy in
units of kT, N.(e)dc is the equilibrium concentration of molecules in the
range & to & + de,

X(e, 1) = N(e, 1)/N(e) (©)
is the ratio of concentration of molecules at & to the corresponding equili-
brium concentration,

X(0, 1) = [A][B]/[A][BI. (7
is the ratio of the product of the concentrations of A and B to the corres-

ponding product at equilibrium, R(¢', &) de’ de is the equilibrium rate of
transitions from de to de’, and

R(c, ¢) = j:R(s', 0) de’ ®)

is the equilibrium rate of transitions from de to the dissociated state.
Note that by definition
R(e, &) = K(¢', ©)N(e) = K(&, &)N(¢") = R(s, &) )

and
R(c, &) = K(c, &)N.(e) = K(e, c)[AL[B]. = R(e, ¢) (10)
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where K is the usual transition rate constant and we have assumed detailed
balancing.

As may be inferred from the work of Montroll and Shuler (1958) and
Brau, Keck, and Carrier (1966), the evolution of a system described by (5)
from any initial distribution to final equilibrium begins with a rapid relaxa-
tion to a quasisteady distribution which is “almost Boltzmann™ over most
of the range —d& < & < 0. This initial phase, during which dissociation and
recombination are negligible, has a duration of the order of the vibrational
relaxation time and, except at very high temperatures, is followed by a
much longer phase during which most of the dissociation and recombination
occurs and the ‘*almost Boltzmann ™ distribution is maintained in a quasi-
steady state. During this latter phase the left-hand side of (5) is very small
for all energies greater than (—d + 1) and may be set equal to zero. Under
these conditions the ““ almost Boltzmann ¥’ distribution can be closely approx-
imated by the form

X(e, 1) = lﬁz ;)) + [X(=9, 1) — X(c0, D)]x(e); z gg iy

where y(—48) = 1 and (¢) is a solution of the steady state master equation

0
0= [ RE, @) — 1)l de’ = Re, 1@ (12)
Substituting (11) into (5) and integrating both sides from —d to 0 we find
d[AB]/ot = [X(c0, 1) — X(—0, )]Ry 13)
where
0 0 o
Ry = J R(c, e)y(e) de = J f R(e'e)y(e) de’ de (14)
=8 -8*0

is the nonequilibrium steady state dissociation rate.

In the temperature range where the steady state approximation is valid
N.(¢) has a strong maximum at ¢ = —4, and it is a good approximation
to set

[AB] = j :X(s, HN,(e) de ~ X(—9, [AB],. (15)

Introducing (15) and (7) into (13) we obtain the familiar phenomenological
rate equation

o[AB]/ot = k[A][B][C] — k4[AB][C], (16)

where the steady state recombination and dissociation rate constants k. and
k, are defined by

k[A]c[B].[C] = k4[ABL[C] = Ry an
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The corresponding equilibrium rate constants k., and kg4, are defined by
ke [AJe[BLIC] = kyc[AB][C] = R(0), (18)

where
»0 (] @
RO)= | R(e,)de= j j R(e'e) de’ de (19)
= ] =3 ~0

is the *“ one way * equilibrium dissociation rate. As will be seen later, y(¢) < I,
so that (17) and (18) imply

kdfkr = kder’(krc = [A]e[B]cK{AB]e (20)
and
kdj”kdc = kr‘{kre = -RN/R(O) <l (21)

Thus, the steady rate constants k, and k, satisfy detailed balancing even
though they are in general less than the corresponding equilibrium rate
constants.

To evaluate the steady state rate constants using (14) and (17) we must
find y(¢) from the integral equation (12). There are several techniques for
doing this, each of which is especially useful for kernels R(¢', ) of a particular
character.

.A. SOLUTION BY ITERATION

If the energy transfer per collision associated with the transition kernel
R(¢', ¢) is large compared to kT, it is relatively easy and efficient to solve
(12) by iteration. To do this we simply rewrite the equation in the form

1) = j O R(&, &)™(&) de'|Z() 22
where

2= [ :R(c*, O de + Re,)= | RE@,5)do 23)

is the equilibrium collision rate per unit ¢ and ¥ is the nth approximation
to x(¢). For strong coupling kernels of the type associated with statistical
theories of reaction rates (e.g., see Keck and Kalelkar, 1968) a reasonable
guess for 7(©(e) will usually produce acceptable results in one or two itera-
tions. In general, however, the transition kernels derived from Monte Carlo
calculations imply energy transfer somewhat less than k7 and in this case
the solution of (12) by iteration is relatively inefficient.
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B. SOLUTION FOR A SEPARABLE KERNEL

For a transition kernel which is separable in the form

;o [r@)ra(E); e<é -
RE, 8= lri(a’)rzz(ﬁ); g<e (24)

then, regardless of the energy transfer per collision, (12) may be transformed
exactly into the equivalent diffusion equation (Keck and Carrier, 1965)

d (Z3\ dy
=== 2
de (W) de 0 (25)
with the boundary condition
diny r. W
where '
W(e) = ry(dr,/de) — r,(dr,/de) (27)
Z(E)=ryr_ +rir, (28)
r_(e) = j ry(e') de’ (29)
—d
and
ra@) = [ roe)de’. (30)
Integrating (25) and using (14) and (26) we obtain
E W ;
2(e) =1 — Ry f_ (?) de (31)
where
Ry ¥ weE)N .17t
= [1 +| P | R s)(z—-—2 (8,)) de ds] (32)

and we have assumed that R(c, —9) < Z(—J), which is consistent with the
use of the steady state approximation. This simply means that the fraction
of molecules dissociating directly from energies within k7" of the potential
minimum is negligible. Comparing (32) and (21) we see that (32) is just the
ratio k/k, of the steady state and equilibrium rate constants.

C. EQUIVALENT DIFFUSION EQUATION

If the energy transfer per collision associated with the kernel R(¢', &) is
small compared to k7, the steady state master equation (32) may be con-
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verted to the equivalent diffusion equation (Keck and Carrier, 1965)

d Az) dy
de ( 2)de 0 (93
where
]
A e) = j (¢' — &)"R(¢, €) de’ (34)
—d
and we have used the approximation
A, =1 dA,/de (35

which is valid for kernels satisfying the condition
| (OR(e', 8)[08) 5| < |(OR(E', &)/0A);] (36)

where & = (¢ + ¢)/2 is the mean of the initial and final energies, and A =
(¢" — ¢) is the energy transfer.
Integrating (33) and using the boundary condition

AL\ dy 9
wf ZELAN] ol R :
(3) %] = I e onw ds @)
obtained by matching the diffusion flux to the dissociation rate, we find
& 49
=1- =) de’
) Ry | _5(,1\2) de (38)
where
5= [1+ 1 e o) o]
— =1 R(c, e)|——) de' d 39
7o~ |1+, LR ag) & & e

is the ratio (21) of the steady state and equilibrium rate constant in the
diffusion approximation. In the limiting case of a separable kernel for
which Z and W/Z? are slowly varying functions of &, A,/2 approaches Z2/W,
and the results (39) of the diffusion approximation approach those (32)
for the separable kernel.

This completes our discussion of the equations which may be used to
describe the nonequilibrium dissociation and recombination process, and
we now turn our attention to the problem of determining the required equi-
librium transition kernel R(¢’, &).

III. Transition Kernel

A. VARIATIONAL THEORY

To obtain a general expression for the transition kernel R(e', €) suitable
for evaluation by Monte Carlo methods, we start with the variational theory
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(Keck, 1967) of reaction rates. We assume that the Hamiltonian H(p, q)
of the system and the density of representative points in phase space p(p, q)
are known and independent of the sign of p. Then under steady state condi-
tions the flux of points across a surface S dividing the initial and final states
of the system is )

Ry(S)= L(Hp(v'n) ds = — L{_)p(\“n) ds

1
=5J.Sp[1“n| ds, (40)

where Ry(S) is the variational rate for the surface S, v is the generalized
velocity, n is the unit normal to the surface element dS, and S(+) and S(—)
denote the portions of the surface S on which v+ n is positive and negative,
respectively. If we further assume that the definition of S is independent
of the sign of p and take into account the fact that a phase space trajectory
connecting given initial (i) and final (f) states may cross S more than once,
the transition rate from (i) to (f) may be expressed in the form

; 1
R(1,f)=—jm—'1(;,f)p|v-n| ds (41)
2Js
where m is the number of times a trajectory crosses S and 7 (i, f) =1 for

trajectories passing through dS which connect i and f, and is zero otherwise.

To evaluate R(i,f) using a particular set of coordinates (p,q) we let
$(p, @) = 0 be the equation of the surface S. Then the unit normal to ds
is given by

n=V¢/|Vo], 42)
and the element of length parallel to n is
dh = dp/| V| 43)

where V is the generalized gradient in phase space.
Using Hamilton’s equation

pj= —0H|og;,  4;= 0H|p, (44)
to obtain the components of v and observing that
dhdS =] dp;dq; (45)
J

is just the volume element in phase space, the variational rate (40) can be
written

1
Ry(S) = L v aH T] dp; da, (46)
: =
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and the reaction kernel (41) can be written
. 1 B
R(, ) = —f m= (i, f)p, dH [] dp; dq;, (47)
2Jp=0 i=2
where

pr=p ’ i+ EZJ(M) (48)

Pid;

is an effective density and

J(Eﬁ‘)=apl 091 _ Op1 94 | (49)

P;id; op; 0q ; a 0q;0p;

is the Jacobian of the transformation from (p;q,) to (p;q;)-

To determine the functions m and I(i, f) we must solve the equations of
motion (44) for systems passing through S and, for three or more particles,
this can only be done numerically. Under these conditions the transition
kernel R(i, f) must also be evaluated numerically, and Monte Carlo methods
are ideally suited to the problem. They enable one not only to integrate the
equations of motion, but simultaneously to evaluate the multidimensional
integrals in (46) and (47).

B. MoNTE CARLO METHOD

A general discussion of Monte Carlo methods may be found in the litera-
ture (Hammersley and Handscomb, 1964; Meyer, 1956). In the present
application we are concerned with the evaluation of multidimensional
integrals of the form

R f (%) dx (50)

where x denotes a point in an n-dimensional space, dx is the volume element
and f(x) is a positive definite function whose value can only be determined
after the value of x has been specified. We wish to estimate the value of
R by random sampling of the integrand in the domain of x. Let w(x) be
the density of sample points in the vicinity of x. We require that w(x) be
easily integrable and normalized so that

jw(x) dx =1 (51)

We next divide the domain of integration into finite regions A; sufficiently
small so that the variation of w(x) in A; is negligible but sufficiently large to
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contain a reasonable number of sample points. The integral (50) can then
be approximated in the form

R=3 ()5 &)
where
n;=w; AN (53)

is the number of sample points in A;, N is the total number of sample points,
w, is the mean value of w(x) for A;, and f; is the value of f(x) at the sample
point x; in A;. Substituting (53) into (52) and observing that w; =~ w; for
all points in A;, we obtain

256 -7 ()
=— Ly =— = (54)
N ;; w;/ N ; Wi
where the sum in the last expression for R is taken over all sample points
in the domain of integration. Note that w(x) must be positive unless f(x) =

To obtain a set of sample points distributed in accord with w(x) we intro-
duce the conditional probability distribution functions

Py Xy | o) = (W)™ f_ W dx, (55)
where
Wiry - xd = [ dxey o [ dxw®) (56)

is the probability density for the first k£ coordinates of x. We then generate
a sequence of random numbers Y, - Y, uniformly distributed on the
interval 0 to 1 (Meyer, 1956). Using these numbers, the coordinates «; ** a,
of a sample point can be determined by solving the set of equations

P.=Y,; l<k<n (57)

in ascending order. This procedure may be repeated to produce as many
points as desired. If the density function is separable as a product in the form

w(x) = H wi(x;) (58)
then the distribution functions (55) become

po=[ [ e ax] [ meo ax 59




MONTE CARLO TRAJECTORY CALCULATIONS 49

and the coordinates may be chosen independently. This result can easily be
generalized to situations in which w(x) can be separated as a product in
any form.

In most previous applications of Monte Carlo methods to reaction rates,
the distribution of sample points has been specified arbitrarily as a matter
of convenience. This is rarely the best procedure and it is usually possible
to improve the efficiency of the calculations considerably by optimizing the
distribution function. To do this we assume that the values f; of the unknown
function f(x) at the various sample points X; can be treated as independent
random variables. Using (52) the expectation value of R can then be written

<R> =, z Ai<f>i. (60)

where we have assumed that the expectation value of f; is the same for all
points in the volume element A;. For the same set of assumptions the variance
of R

d*(R) = {(R— {R))*) = (R*) — (R (61)
is easily shown to be
*(R) = n* Y. Ao (f) (62)
Minimizing the fractional error o/{R) for a fixed number of sample points
N = Z ni (63)
we obtain the optimum density of sample points
-1
Wio = n/A; N = a;(f) [Z A; Uj(f)] (64)
J
or in integral form
=1
o) = o) o) x| (65)

In deriving this expression we have tacitly ignored the additional constraint
that w(x) be integrable analytically. It is clear, however, that we should
choose our integrable w(x) to approximate wy(x) as closely as possible.

Using (64) to eliminate A, in (62), we obtain the expression
a(R) =N~ 3 A;a(f) (66)
or I
o(R) = N"' [o(f) dx (67)

for the standard deviation of R associated with the optimum distribution.
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For the case of the rate integral (47), the integrand in (50) has the form
fx) =m™G, Dpy (68)

and its Monte Carlo approximation (54) can be written

; L& (IG, £ )Pv)
R, f)=— :
an=5% o2 (©)
The optimum density of points obtained from (65) is
-1
wo(x) = pyo(m™ ‘I)[J pyo(m™1I) dx] (70)

To evaluate a(m 1) we let p,(x) be the probability that a trajectory sampled
on the surface S connects i to f with m crossings of S, then

21y = 5 Pm (5 Pm)’
o“(m 11)_§m2 (gm) (71)

For the special case in which p,, = 0 for m > 1, we obtain the familiar result

a(m™1) = [p,(1 = p)I'”? (72)

associated with the binomial distribution.

In general p,(x) is unknown or can only be roughly estimated a priori,
and it is necessary to assume its form initially. As the calculations proceed,
however, the distribution can be systematically improved by using the accu-
mulated results to approximate p,(x) in a given region A; using the relation

Prmj = Snjs (73)

where f,,; is the fraction of points sampled in A; which cross the sample
surface S,m times during the reaction. In the important special case where
Pn(%) is independent of the position of the point in the sample surface,
(70) reduces to

wy(X) = py/Ry(S) (74)
Substituting this expression for w in (69) we find
N .
R@i,f) = Ry(S)N ™'Y [m™'I(1,1)];. (75)
J

If, as is usually the case, py is not readily integrable but we can find a reason-
ably close approximation p, which is, then (69) also gives

. R, X [1G, )py
R, f)=—= [—-—-], 76
=35 e, @
where

Ry= [padH ] dp; da; (17)
J
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and we have set
wu(x) = py/R,. (78)

The approximation for p, must of course satisfy the requirement p, >0
unless p, = 0.

C. IniTIAL CONDITIONS

The efficiency of Monte Carlo calculation is influenced not only by the
manner in which points are sampled on a given surface, but also by the
choice of surface. In most Monte Carlo studies (Morokuma and Karplus,
1971; Mok and Polanyi, 1970; Kuntz et al., 1970; Bunker and Pattengill,
1968; Abrines et al., 1966; Abrines and Percival, 1966) the points have
been sampled on what may be called the ““impact parameter surfaces.”
For two particles with a relative separation r these surfaces may be defined
by the equation

@ )i =a (79)

where a is the ““stand-off” distance which must be greater than the range of
the interaction potential between the particles. The variational rate (46)
for the “impact parameter surfaces” is

Ry(P)= [p

t|2nb db dp dP dR (80)

where b = |r x i|/|¥] is the impact parameter, p is the relative momentum,
and P and R are the momentum and position of the center of mass. As is well
known, this rate diverges and convergence of the corresponding transition
kernel R(i, f) depends on the fact that the transition probability {m *I(i, f)>
goes to zero for large values of 4. In sampling on the “impact parameter
surfaces” the divergence of R, (IP) is usually handled by cutting off the
impact parameter b at some maximum value b,,. This cut-off must be chosen
with some care, however. If it is too large the fraction of reacting trajectories
may be very small and the calculations become very inefficient. If it is too
small some reacting trajectories may be omitted and an artificial bias is
introduced into the results. The principal advantage of the *“impact para-
meter surfaces” is that they permit @ priori specification of the phase space
density in the initial state. This is important if one wishes to simulate the
results of beam experiments carried out for particles in precisely defined states.
If any appreciable averaging is involved or if results are required for a sequence
of initial conditions this advantage rapidly disappears.

For the simulation of reaction rates under thermal conditions it is usually
far more efficient to sample on surfaces passing through the collision com-
plex and to integrate the equations of motion forward and backward in
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time to the initial and final states. This not only materially increases the
fraction of “reacting” trajectories but also permits one to terminate the
integration of the equations of motion as soon as it becomes clear that the
interaction has become negligible, a condition easier to recognize going
out of a collision than into it. One has a great deal of freedom when sampling
is carried out in the collision complex and the best choice of surface depends
on the class of reactions being studied. In this connection the variational
theory (Keck, 1967) can be of considerable assistance.

To our knowledge the only Monte Carlo calculations that have been
reported using sample surfaces interior to the collision complex are those
carried out by the author and his co-workers on excitation and dissociation
in three-body collisions (Keck, 1962; Woznick, 1965a; Mansbach and Keck,
1969). The surfaces used in this work were defined by the conditions.

E—-B=E;<0; r<z (81)

where E, is the energy of the surface with respect to the top of the rotational
barrier, z is the radius of the rotational barrier, and r is the separation of
the atoms forming the molecule. The variational rate Ry(E,) for the ** barrier
surfaces ” has been evaluated by Woznick (Keck, 1967) for Morse potentials
and Mansbach and Keck (1969) for Coulomb potentials. The expressions
are somewhat complicated and will not be given here as they are not required
for our present purposes. For Morse potentials the “ barrier rates ” are finite
and give a rigorous upper bound to the true rates which are, in general,
within a factor of 10 of the experimentally observed rates. For Coulomb
potentials the “barrier rate™ diverges linearly with the distance of the
“third body” from the center of mass of the atom and a cut-off must be
introduced. Even so, the divergence is one order lower than that for the
“impact parameter surfaces,” and it was this which made Monte Carlo
calculations of atomic excitation and ionization under thermal conditions
feasible.

IV. Molecular Excitation and Dissociation

Using the methods discussed above Keck (1962) and Woznick (1965a)
have investigated the excitation and dissociation of simple diatomic mole-
cules in three-body collisions. Attention was focused on states within a few
kT of the dissociation limit since it was anticipated that these would be
most important for determining the steady state dissociation and recom-
bination rate constants. Furthermore, this is the region in which classical
mechanics should be a good approximation due to the high density of states
and large quantum mechanical transition probabilities involved.
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Most of the calculations were for homonuclear molecules interacting
with purely repulsive third bodies; however, a few recent results for hetero-
nuclear molecules interacting with repulsive third bodies and homonuclear
molecules interacting with third bodies characterized by potentials with a
weakly attracting minimum are also included (Shui, private communication).
It was assumed that superposition applied so that the full three-body po-
tential could be represented by a sum of pairwise interactions in the form

V= Via(ri2) + Vas(raa) + Vis(ria) (82)
where the molecular interaction ¥,,(r,;) was always of the Morse form
Viulr) = D(ll = e+~ 83)

and the interactions with the third body V;;(r;3) and ¥,3(r;3) were of the
Morse form for the attracting cases and of the exponential form

Vi(r) = de™"" (84)

for the repulsive cases. The potential parameters used are summarized in
Table 1. As will be seen the results were surprisingly insensitive to these
parameters.
TABLE I
POTENTIAL PARAMETERS

Morse Exponential

DeV)  BdA™Y)  rd4) A(eY) L(A)
H, 4,75 1.93 .74 HeH 134 0.27
N2 9.90 2.69 1.10 HeCl 547 0.27
0, 5.18 2.65 1.21 Hel 790 0.29
Cl, 2.51 2.03 1.99 ArH 268 0.35
1. 1.57 1.86 2.67 ArO 760 0.35
HCI 4.62 1.87 1.28 ArCl 1060 0.35
NAr 017 1.49 3.18 Arl 1510 0.39
ClAr 033 1.41 3.39 XeO 915 0.40

The trajectories were sampled on that portion of the *barrier surfaces™
(81) where v-n < 0 using the weight function (74). Although this function
is not as easy to integrate as one might wish, the possibility of using simpler
approximate forms and correcting in the manner of (76) was overlooked
in the initial work. A detailed discussion of the *‘barrier surfaces” and
associated crossing rates Ry(E,) is given by Keck (1967).

The six coupled equations of motion (44) for the relative motion of the
three particles were integrated using standard fourth-order Runge-Kutta
and predictor-corrector methods on IBM 7090 and 360-65 computers.
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Tolerances were set by requiring energy conservation to within .01 k7 and
angular momentum conservation to within 0.19%,. To determine a complete
trajectory the equations of motion were integrated both forward and back-
ward in time until the interaction potential fell below .01 KT and the third
body was moving outward.

A few typical trajectories illustrating the various reactions which can
occur are shown in Figs. 1 and 2. The cases presented, H, + Ar at kT/D =0.01
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FiG. 1. Typical trajectory histories for H, - Ar collisions at kT/D = .01. Shown plotied
in dimensionless form are the separation r;» of the H atoms, the distance r; of the Ar
from the center of mass of H, and the energy relative to the top of the rotational barrier
(E — B). v, = 1.3 x 10" sec! is the ground state vibrational frequency of H,, §=1.93
% 108 cm~" is the range parameter for the Morse potential, r. is the equilibrium separ-
ation, and z, is the most probable position of the rotational barrier.
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FiG. 2. Typical trajectory histories for I, + Ar collisions at kT/D=0.1. v.=6.5
% 1072 sec—! is the ground state vibrational frequency of I and 8= 1.86 x 10® cm™' is
the range parameter for the Morse potential. Other quantities are defined in the caption

of Fig. 1.

and I, + Ar at 0.1, are two extremes in the ratio of collision time to the vibra-
tional period of the molecule. Examples of free-bound (fb), free-free (fi),
and bound-bound (bb) transitions, are shown. These figures enable one to
observe the general character of the particle trajectories and energy exchanges
for molecules crossing the surface ¢ = (E — B)/kT = 0. The molecular vibra-
tions are highly anharmonic and the energy exchanges are typically of order
kT or less.

Table 1I shows the distribution of trajectories with respect to the number
of crossings of the surface ¢ =0 in the free-bound direction for several
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TABLE 11

DISTRIBUTION OF TRAJECTORIES, WITH RESPECT TO CLASS OF REACTION AND
NUMBER OF TRAVERSALS k& OF THE TRIAL SURFACE IN FREE BoUuND DIRECTION®

Class (] k=1 2 3 Total
A.2H+ 4
N kB .01 94 28 0 122
1 60 26 3 89
NN .01 74 8 2 84
1 91 19 0 110
Nb|k|b) .01 119 14 2 135
1 108 16 1 125
NG|kl .01 19 1 0 20
A 26 2 0 28
N(dE/dT > 0)* .01 35 4 0 39
i 36 11 1 48
Total .01 341 55 4 400
A 321 74 5 400
B.20+ 4
N(f|k|b) .01 146 33 2 181
.1 128 31 0 159
N(flk|f) .01 81 4 0 85
N 77 14 0 91
N(b|k|b) .01 94 8 0 102
1 100 6 0 106
NGk .01 15 0 0 15
A 13 1 0 14
N(dE/dt => 0)° .01 12 5 0 17
A 28 2 0 30
Total 01 348 50 2 400
N 346 54 0 400
C. 21+ 4
N(f|k|b) .01 256 7 0 263
| 282 4 0 286
N(flkif) 01 48 0 0 48
1 44 0 0 44
NG| k|B) .01 69 1 0 70
1 39 1 0 40
NGb|K[f) .01 0 0 0 0
| 5 0 0 5
N(dE/dt = 0)" .01 16 3 0 19
1 25 0 0 25
Total .01 389 11 0 400
A 395 5 0 400
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systems at &7/D = 0.01 and 0.1. It can be seen that the number of multiple
crossings decreases as the ratio of the mass of the molecule to the mass of the
third body increases, i.e., as the collisions become more impulsive. Using
this data, the net fraction of “‘reacting” trajectories can be obtained from
(68) and is given by

(85)

RO) 1 % [@] _NO
Ry(0) NoO)F L k f; No(0)

where No(0) is the number of sample points, k = (m + 1)/2 is the number of
times a trajectory crosses the surface ¢ = 0 in the free-bound direction, and
I(0) =1 if &; > 0 > &, and is zero otherwise. The values of this fraction for
all of the systems studied are given in Table II1. Also given are the number of
points sampled, the masses m; and mj; of the recombining atoms and third
bodies, and the two parameters [ms/(m, + m3)]'/* and L. In the case of
HCI, m, was taken to be the mass of H since the variational rate for collisions
with the Cl end of the molecule is negligible. The systems are arranged in
order of increasing [ms/(m, + m3)]'?, and it can be seen that a strong cor-
relation exists. This is shown graphically in Fig. 3 and may be represented
by the empirical equation

N(0)/No(0) = 1 — 0.7[ms/(my + m3)}'"2. (86)

A correlation of this type is reasonable, since as ms— 0, the collisions
become impulsive and recrossings do not occur, while for my — 00, the net
energy transfer to the third body tends to zero and recrossing is highly
probable. The exact form of the correlation is not understood, however.
Based on this correlation, which applies strictly only to homonuclear and
highly asymmetric heteronuclear molecules interacting with third bodies
that are in all cases effectively repulsive, we suggest the expression

-l () e ) o

No(o)_ m1+m2 m1+??‘l3 m1+m2 m2+m3

as a reasonable approximation for a general diatomic molecule interacting
with a repulsive third body. No other statistically significant correlation
cither with k7/D or BL has been found. This is somewhat surprising and
suggests that the transitions occur primarily as a result of a “spectator

FoornoTtes To TABLE II:

@ The parameter 8 = kT/D.

¢ These trajectories which crossed the trial surface in the wrong direction
arose from an approximation made in separating the weighting function (74)
in which only nearest neighbor interactions were taken into account. They
were eliminated in compiling the statistical results.
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TABLE III

REeacTING Fracttons N(0)/Ne(0) For SURFACE E— B=0

iy Y kT N(0)
™ (:m ¥ ma) AL 3 MO 5
I, + He 127 4 175 .54 0.1 200 874 .03
.01 200 .80+ .03
O, + Ar* 16 1 24 93 0.1 25 .90 + .06
01 25 78 .08
0,°+ Ar 400 40 30 93 0.1 25 76 4 .09
.01 25 76 4 .09
I, + Ar 127 40 49 o) 0.1 800 70 4 .02
01 400 67+ .03
Cl, + Ar 35 40 73 72 .05 600 56 4 .02
O + Ar 16 40 .85 93 0.1 800 39 4+ .02
01 800 41+ .02
N, + Ar 14 40 86 .90 0.1 300 38403
.01 300 .50+ .03
HCI -- He 1 4 .89 51 0.1 300 41+ .03
0 + Xe 16 131 .94 1.06 0.1 800 37+.02
.01 400 34403
H, + Ar 1 40 99 .68 0.1 400 214 .02
01 400 .30 -+ .03
HCI + Ar 1 40 99 .65 0.1 300 254+ .03

05 300 .34 4 .03

% Fictional species having masses indicated but correct force constants.

process ”” in which the third body collides with one end of the molecule and
there is negligible momentum transfer to the other.

To obtain information about the transition rates between bound molecular
states, calculations for trajectories sampled on the surfaces e = —1, —2, and
—3 were also made. From them one can construct the transition kernel
R(e;, &) for states near the dissociation limit using the approximation
based on (75)

(88)

R, 8) = R,.(s)“i [I(si >e> sj)]
J

No(e) 5 kAe Ag;

where Ny(g) is the number of points sampled on the surface s and I(e; > & > &)
=1 if a trajectory starts in the energy interval g; + A¢;/2 and ends in & +
Agg/2, and is zero otherwise. A plot of R(g;, &) for O, + Ar at k7/D = 0.1
is shown in Fig. 5. The numbers in the boxes are the mean value of R(g;, &)/
R,(0) for the box. The reference rate Ry, (0) is the barrier rate for the surface
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F1G. 3. Fraction of “reacting” trajectories for the surface e=(E—B)/kT=0 as a

function of the parameter [ms/(m; + ma)]*2: kT/D = 0.01 (O), 0.05 (A), 0.1 (@). The
straight line is a *‘best fit” to the points.

-

Rle) /Ry (o)e

1.0

kT/D

0080 1
e L-te/87
.3500 1+ (e/D)3
2 Is 3:.57
1 1 1
03 1072 w0~!

-e/8 = (B-E}/D

FiG. 4. Calculated values of G(E)= Ry(g)e®/Ry(0) as a function of energy relative to
the top of the rotational barrier for homonuclear molecules interacting with repulsive

third bodies at several temperatures. The curve is an empirical fit to the points.
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¢ = 0. Because of the sampling technique employed, each value of & used
gives data in a quadrant that touches the main diagonal ¢; = & at a point
(¢; + €)/2 = e. A sample of 800 trajectories was used for each value of e.
The statistical errors based on the standard deviation range from 4107,
for the small boxes touching the main diagonal to 4309 for the large boxes
farthest from the main diagonal. The results shown are for &; > &, however,
since R(g;, &) is symmetric in g; and &, the results for & <& may be ob-
tained by reflection in the main diagonal. It can be seen that in the range
investigated R(e;, &) varies relatively slowly with the mean energy & = (¢; +
&)/2 but decreases sharply as the magnitude of the energy transfer |A| =
|e; — & increases.

To use data of this type in the solution of the master equation (5), it is
convenient to represent R(;, &)/Ry(0) as a separable kernel in the form

Ree;, e/ Ry(©) = r(e;. &) = { nEra(e); & <& (89)

ri(edra(e); & > &
A simple three parameter function which has been found to give excellent
results is

r(e;, &) = AG(ege™ %%, & 24 (90)

where A, a, and f are constants and G(g;) is a function which may be arbi-
trarily specified. The smooth curves in Fig. 5 show a fit of this type and they
can be seen to represent the data very well. The function G(g) was taken to be

_Ry@e _[1—(~¢/6)'’]
Ry(0) " [1 +(—¢/5)"'*]

and is shown in Fig. 4. The points were computed by Woznick (1965b) and
apply to homonuclear molecules interacting with repulsive third bodies.
The curve in the figure is a convenient empirical fit to the points. The corres-
ponding data for heteronuclear molecules is not yet available. The constants
A, o, and p were obtained by fitting the low-order moments of the energy
transfer & — ¢ obtained from the numerical data to the corresponding
quantities computed for the assumed kernel (90).
To do this we define the moments

G(e) ©n

D,(e) = Ae* | j (6, — &)~ Le®r~Fa dg, de,
-a &

e+ A2

= Ae* f: L—m A" g =88 gz dA

24 w bA
= (?)e“ by fo A" e~ sinh (?) dA 92)
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Fic. 5. Differential equilibrium transition rate R(g;, &) for O, 4 Ar collisions. Num-
bers in boxes are averages for the box. The smooth curves are a fit of Eq. (90) to the data.

where @ = a — b/2 and f§ = a + b/2. In general, @ > b, and to a good approxi-
mation

D,(6) ~ Anla™""lel 702 (93)
Using (90) we also have
D@ =e| [ o= ey G Crten, 5 des deg %)

Evaluating this integral by Monte Carlo methods we obtain

mase oG, (),

where I(e) = 1 if &; > & > &, and is zero otherwise.

The quantities D,(¢) are very useful for characterizing the transition kernel
and are a much more accurate and efficient way of presenting the numerical
results than plots of the type shown in Fig. 5. For transition kernels satisfying
the condition [OR(&;, &)/0A]; > [OR(s;, &)[0é],, they are approximately

D,(e) =
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related to the ““one way” equilibrium crossing rate (19) and moments (34)
by the expressions

R(&)/Ry(e) = D (¢) (96)

and
A,(e)
Ry(e)

Thus they may be used directly to obtain the quantitics necessary to solve
the equivalent diffusion equation (33).

A summary of the low-order D,(g)’s is given in Table IV for the systems
for which they are available at the present time. Using this data the constants
Ala* and b can be determined by plotting

In D,(g) = In(N(e)/Ny(e)) = (1 — b)e + In(4/a?)

as a function of & as shown in Fig. 6. The slopes of the lines give (1 — b)
and the intercept at ¢ = 0 gives A/a®. The constant a can be determined by

n-ll()

=[1+(=1)"1D,e) + i1 = (=) ——— 7

(98)
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trajectories as a function of & for 1, -

A (triangles),

0O, + A (circles), and O, + Xe (squares) at k7/D = .01 (closed symbols), and 0.1 (open

symbols). The straight lines are a

““best fit” to data.
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taking the ratio of successive moments. Using the data in Table IV we have
formed the combinations D,/Dg, 2D,/D,, and (12D,/D4)'/* which are also
shown and each of which gives a value for a. Although there is considerable
statistical scatter in these ratios there appears to be no significant dependence
on the value of &. We have therefore averaged the values for various &’s
to obtain the results shown in parentheses. Inspection of these results shows
that the apparent value of a decreases as the energy transfer increases.
Thus, the simple exponential form (90) does not give an exact fit, and the true
kernel gives a somewhat higher probability for both small and large energy
transfers. Since we anticipate from the diffusion analysis that it is the first
and the second moment which are most important for determining the steady
state rate constants, we have used the value of a given by the ratio 2D,/D,
to give a ““best fit” to the data.

The values of A4, a, b, o, and f determined in the manner just described

are shown in Table V. It appears that a is essentially independent of the mass
ratio ms/m,, but is a weakly increasing function of k7//D. On the other hand,

TABLE 1V

SUMMARY OF ENERGY TRANSFER MOMENTS

kT N DoNo 2N [12 D,\'*

D ¢ N P PP Ty BN ( D )
I, + Ar 0.1 0 73 364 64 278 50 23 1.7
-1 65 152 72 323 23 1.8 1.6
-2 58 211 .65 282 37 1.8 1.7
-3 57 112 .63 230 20 18 1.8

33 19 4D
0O, + Ar 0.1 0 42 1.83 42 209 43 20 1.4
—1 27 105 32 200 39 17 1.4
— 22 127 26 150 59 1.7 1.4
-3 .18 65 20 1.02 35 1.9 1.5

4.4 (1.8 (1.4
01 0 41 93 .59 802 23 1.4 9
—1 28 77 .53 942 2.8 1.1 8
-3 15 120 .23 435 82 1.3 8

4.4 (1.3 (9)
0, + Xe 0.1 0 38 227 47 390 6.8 1.6 1.2
—1 21 g2 .19 87 35 21 1.6
- 13 101 .10 48 75 2.7 1.6
-3 .10 53 .09 28 53 22 2.0

R )
0 0 35 200 471 61 (6 (15 (9
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b is independent of k7/D, but is a weakly decreasing function of increasing

mass ratio. Note that ﬁ/a is just the rms energy transfer per collision in
units of kT, and b is the parameter which determines the position of the
minimum in r(g;, &) along the main diagonal in Fig. 5. The larger the value
of b, the closer the minimum is to the dissociation limit.

TABLE V

CoNSTANTS USED TO FiT AssuMeD TransITioN KERNEL (90) TO DATA

mafmy kT/D A a b o B
I, + Ar 32 0.1 1.2 1.9 93 1.4 2.0
O, + Ar 2.5 0.1 1.4 1.8 g1 1.4 22
0;+ Xe 8.2 0.1 3.0 2.1 58 1.8 24
O, -+ Ar 2.5 .01 .68 1.3 T 1.0 1.6
0, + Xe 8.2 .01 1.5 1.5 _ _— _

It is apparent from the results presented in this section that the mechanics
of three-body collisions is a good deal simpler than one might have suspected
a priori. Additional studies are needed particularly for heteronuclear mole-
cules and attracting third bodies. However, even with the correlations
developed to date, Shui, Appleton, and Keck (1970a, b), and Shui and Apple-
ton (1971), have shown that it is possible to fit all of the measured rate con-
stants for the dissociation or recombination of homonuclear diatomic
molecules in collisions with noble gases. Although in their initial investiga-
tions Shui, Appleton, and Keck were unable to fit the rate constant for the
heteronuclear molecules HF and HCI, it has since been determined that
this was due to the extension of a correlation valid for homonuclear mole-
cules to the heteronuclear case. Recent Monte Carlo studies, some of which
are reported here, have resolved this difficulty and there is now good agree-
ment between theory and experiment for the heteronuclear case as well
(Shui et al., 1972)

V. Atomic Excitation and Ionization

Monte Carlo studies of atomic excitation and ionization in three-body
collisions have been made by Mansbach and Keck (1969) for low temperature
thermal electrons, Abrines, Percival, and Valentine (1966) for high energy
monochromatic electrons, and Abrines and Percival (1966) for high energy
monochromatic protons.

In the work of Abrines ef al. an impact parameter formulation was used
and attention was focused on direct ionization and exchange scattering for
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atoms initially in a specified quantum state. The energies of the incident
electrons or protons were always greater than the ionization potential and
no information about direct scattering was presented. Since thermal excita-
tion and ionization involve primarily direct scattering of electrons with ener-
gies less than the ionization potential, these results are not directly applicable
to this problem and will not be discussed in detail. In general the Monte
Carlo calculations agreed reasonably well with the predictions of previous
classical theories. They also agreed with experimental measurements for
protons and high energy electrons. For low energy electrons, however, the
calculated ionization cross sections were somewhat larger than the measured
ones and Abrines et al. suggest that this is probably the result of neglecting
interference between direct and exchange scattering.

In the work of Mansbach and Keck, the trajectories were sampled on the
constant energy surfaces E,,/kT =, where E;, = p?,/2m — €’[ry,, is the
energy of the electron in the atom. In the energy range 0.03 < kT < 1.0 eV
investigated, the most important process was direct excitation by incident
electrons with a mean energy substantially less than the ionization energy.
Exchange occurred in approximately 15 %, of the cases but was not separated
from the direct process. The most important results of these calculations are
summarized in Fig. 7, 8, and 9. Figure 7 shows that within the statistical
errors the fraction of trajectories N(g)/No(e) making the transition & > & > &
is independent of temperature for the surface & = —3. Figure 8 shows
that in the range 0.5 <g; — & < 6 the ratio R(g;, &)fe™® is substantially

o8k | =
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04 =

- €=-3 o

02r -

D WO B W N 1 I

0 .03 A 3 R
kT - eV

FiG. 7. Fraction of *‘reacting” trajectories f(€) = N(g)/No(€) for H + e collisions as a
function of temperature for the surface e = —3.
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Fic. 8. Plot of R(g;, &)e®* as a function of & for H+ e collisions. Errors shown are
typical of points in their neighborhood.

independent of energy transfer and varies as (—g)~**? for kT =.082eV.
Thus, R(g;, &) can be fit with the simple separable kernel

R(e;, &) =30 Roe™*(—¢g)™*%%; g > (99)
where
Ry = (&*/kT)*(kT/m)'*[H ], [e].” (100)
is a characteristic equilibrium three-body recombination rate. This kernel is
compared with the numerical results in Fig. 9, which is analogous to Fig. 5
discussed in the preceding section. It can be seen that the fit is quite good.
Unfortunately, the moments D,(¢) were not calculated directly in this case
but (99) may be used to generate them analytically. The root-mean-square
energy transfer per collision obtained in this way is

(ALY s = {2[1 x .050(—&)*}/[1 + (—&;/3.83)]}"/2 (101)

which is slightly larger than the values obtained for molecular excitation
and implies an energy transfer of order 2 kT in the vicinity of the minimum
of R(e;, &) on the main diagonal.

The kernel (99) may also be used to obtain the Maxwell averaged differ-
ential cross section for energy transfer defined by

da(e;, &)/de; = R(ey, &)/c.[e]c[d[H]/de;]. (102)
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Fic. 9. Differential equilibrium transition rate R(g;, &¢) for H + e collisions. Numbers
in boxes are averages for the box. The smooth curves are a fit of Eq. (99) to the data.

where ¢, = (8 kT/am)'/* is the thermal speed of the electrons and
(d[H]/de), = [el[H]. (x/2)*/*(&? [kT)*[e*/(—2)**] (103)

is the equilibrium density of atoms per unit &. Substituting (99) and (103)
into (102) we find

(_5)_4'83(—35)2'5; g >E
do(e;, &) /de; = o1 2.3 (_8:)-2.333—(5; —a, & > &

where o5 = n(¢?/kT)? is the Thompson cross section.
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It is of some interest to compare the Monte Carlo results with the classical
results of Gryzinski (1959, 1965) since the latter have been widely used in
collisional-radiative cascade theories of ionization (Bates ef al., 1962; Byron
et al., 1962; Norcross and Stone, 1968). This is done in Fig. 10 where we
have plotted the transition kernel R(A, &) computed from Gryzinski’s cross
sections along with the Monte Carlo results as a function of A for ¢ = —3.
It can be seen that for large energy transfers Gryzinski’s exact results
asymptotically approach the Monte Carlo results. For small energy transfers,
however, they are very much larger and diverge as A™>. This suggests a
serious breakdown of the impact approximation in this range.

In cascade theories the divergence has been eliminated by introducing
a cutoff at the level spacing. The reason this has not produced serious errors
is probably due to the fact that it is the second moment of the energy transfer
which is most important in controlling the transition rates and this only
diverges logarithmically.

Mansbach and Keck (1969) have compared their Monte Carlo results
with experimental measurements under conditions where radiative processes

T T I I I
2
10° .
€ =1/2(€¢+€;)=3
|
10 .
o GRYZINSKI ;
[
€ oot EXACT 4
- APPROX
Tw L .
“: 1
<q 0 F .
= MONTE CARLO
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4

FiG. 10. Comparison of differential equilibrium transition rate obtained by Monte
Carlo methods with results computed from Gryzinski’s “exact™ and “‘approximate™
cross sections obtained by using the impulse approximation. Gryzinski's results which
diverge as (A£)~? overestimate the probability of small energy transfers by a large factor.
This is the result of using the impulse approximation in a region where the collisions are
highly adiabatic.
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play a minor role. They find good agreement for the steady state distribution
function and the temperature dependence of the recombination coefficient.
However, the magnitude of the recombination coefficient is about a factor of
2 low. It was suggested that this may be due to the combined effect of radiative
cascading at high temperature and dissociative recombination at low degrees
of ionization. Both these processes tend to increase the measured rates.
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