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I. INTRODUCTION

The variational theory of reaction rates provides a systematic
method for making and improving estimates of reaction rates for
systems that can be described classically. It is based on an ap-
proach originally used by Marcelin! in 1915 and later developed in
detail by Wigner,2 Horiuti,? and the writer.* The basic assumption

* Ford Professor of Mechanical Engineering.
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of the theory is that a reacting system can be described by
the motion of a representative point in the phase space of the
system/ This phase space is then divided by a trial surface into
reglons corresponding approximately to the reactants and the
products, and the rate at which representative points flow through
the surface in one direction is calculated. Clearly, such a calcula-
tion gives an upper limit to the true reaction rate since passage
at least once through the trial surface is a necessary condition for
reaction. Finally, the trial surface is varied to obtain the minimum
flow rate, which is the best approximation to the true reaction
rate for the given range of variations.

In principle, this procedure can lead ultimately to the true
reaction rate since it can be seen from the flow analogy that there
exists a set of surfaces that are crossed once and only once by all
trajectories leading from reactants to products. In practice, even
for three-body reactions, the surfaces corresponding to the true
rate are, in general, much too complicated to be dealt with
analytically, and we must hope that reasonable approximations
can be found. In this connection it should be noted that there is
at least one important special case in which the trial surfaces may
be relatively simple. This occurs when the collisions between
particles are impulsive, so that recrossing of the surfaces becomes
negligible. Under these conditions the variational theory gives
results in agreement with those obtained from the impulse
approximation.

The variational theory is very general in its applications and
includes as special cases many of the more familiar classical and
semiclassical theories of reaction rates. We shall, therefore, review
the basic assumptions on which the theory is based.

The first of these assumptions is that the reactions can be
described by using classical mechanics. Although the conditions
for this cannot be stated precisely, a rough general criterion is
that the reduced wavelength 7 of the interacting particles should
be small compared with the characteristic length in which appreci-
able changes in the potential occur. For atomic and molecular
interactions, this may be taken as the Bohr radius a4, and we
obtain the condition:

Aay = (IgmJE M)t < 1, (1.1)
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where [ is the ionization potential of hydrogen, m, is the electron
mass, and E, and M are the kinetic energy and mass of a typical
particle. This inequality indicates that, for all particles heavier
than hydrogen, classical mechanics should be a reasonable approx-
imation for energies above 102 ev or temperatures above 100°k.
It is pointless to argue about how much less than unity 7/a,
should be because the division between classical and quantum
mechanics is not precise, and in practice it is usually found
that, where appreciable averaging of the results is involved,
classical mechanics are valid well into the quantum-mechanical
domain.

The second assumption is that the interactions between particles
can be described by a potential which is a unique function of the
relative position coordinates. For atomic and molecular inter-
actions this requires that the Born-Oppenheimer separation shall
be valid, so that electronic transitions are forbidden. Although
it is now recognized that there are many important exceptions
to this rule, it is still expected to hold for a large class of chemical
reactions.

The final assumption is that the reacting systems are inde-
pendent of each other, so that ensemble averages may be taken.
For reactions occurring in bulk media, this requires that the
systems are sufficiently dilute for the effective range of the inter-
actions to be small compared with the interparticle spacing. An
equivalent statement is that the mean free path 1, of a particle
must be large compared with the range of the interaction. This
leads to the condition

agN ~ apfd, < 1, (1.2)

where N is the particle number density. This is true for most
gases away from the critical point.

On the basis of these assumptions, we may now proceed with
the formal mathematical development of the variational theory.
This is given in Section II. In Section III we use the results of
Section II to derive some of the more familiar theories of reaction
rates. In Section IV we consider the applications of the theory
to the problem of three-body recombination and dissociation,
and in the final Section we discuss briefly corrections and”exten-
sions of the theory.

7
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II. BASIC EQUATIONS

Consi/der an ensemble of systems each containing # classical
partic}es interacting with a known potential. The state of each
system can be represented by a point in a 3x#-dimensional phase
space, the axes of which are the conjugate momentum and position
coordinates (p,q) of the particles. Let p(p,q) be the density of such
representative points. Then, since the number of points is con-
served, p satisfies the equation

%”Jrv.pv:o, 2.1)

where v is the generalized velocity of a point in phase space and
V is the generalized divergence operator. If the Hamiltonian of
the systems is H(p,q), the components of v may be obtained from
the equations

q; = 0H[0p,, P = —0H|dq. (2.2)
These equations determine the flow pattern of points in phase
space which move as though they were entrained in an incom-
pressible fluid. This analogy is extremely useful and permits one
to describe a chemical reaction as the convection of representative
points from one region of phase space to another by the incom-
pressible phase fluid.
We now consider a volume £2(?) in phase space corresponding to
a particular chemical state ¢ of our system. Integrating (2.1)
over this volume we obtain

ON (i) [0t = — L L) f[dpjdq,., 2.3)
where
NG = [ pTlapas, (2.4

is the number of systems in the state ¢. The right-hand side of
eqn. (2.3) may now be converted into a surface integral, so that

ONG)ot = — | p(v.n)ds, (2.5)

Sti)

where n is the unit outward normal to ds and S(7) is the surface
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bounding Q(z). Equation (2.5) merely states that the rate of
change of systems in Q(7) is equal to the negative of the rate at
which they flow out across its boundary.

A. The Reaction Rate

We may now further decompose the surface integral in (2.5)
into terms representing the population and depopulation of the
state ¢ by reactions leading to and from various final states f.
When this is done, eqn. (2.5) becomes

ON(5)[0t = 1;[[R(i,f) — R(f49)], (2.6)
where

R(fi) = L PV mds 2.7)

and S(f,7) is that part of the boundary between ¢ and f on which
(v.n) > 0. Note that R(f?) is the total rate at which represent-
ative points cross the boundary between 7 and f in one direction.
Clearly R(f,) gives an upper limit to the net reaction rate since
all systems which react must cross S(f,7) at least once. It is also
clear from the flow analogy that there exists a set of surfaces
which are crossed once and only once by trajectories leading from
7 to f. However, to find these surfaces, one would, in general,
have to solve the equations of motion (2.2), and this cannot usually
be done. We therefore propose instead to carry out the integra-
tion of (2.7) over various trial surfaces and to select the smallest
crossing rate as the best approximation to the true reaction rate.
This procedure may be carriedsout either by trial and error or by
selecting surfaces depending on a set of parameters which may be
varied to yield a minimum rate.

We now wish to obtain an explicit expression for R(f,7) in terms
of the canonical coordinates (p,q). Let the partial surface S(f7),
corresponding to reactions leading from ¢ to f, be defined by the
set of constraints

Sp.a)=0, C(p,q) <0, (v.n)>0, (2.8),

which determine respectively the boundary of Q(7), the boundary
of the final channel, and the direction of flow. The normal to
S(f,7) can then be expressed

n = (VS/|VS|)s-0, (2.9)
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and substitution of this into expression (2.7) gives
/ R(fi) =[ p(v. vS)|VS|s. (2.10)
S(f.%)
To obtain the Wigner form of the reaction rate, we substitute
v.VS = dS/dt (2.11)

into (2.10), then integrate and differentiate with respect to dS.

This yields
dst)
R(f4) = (dxf L(m (dt) | US|/ x=0 (2.12)

Since |VS|~'dS is just the differential element of length perpen-
dicular to ds, the factor

3n
|VS|-1dSds = TT dp,dq; (2.13)
1

in (2.12) is the volume element in phase space and (2.12) can be
written:

R( fi) = (% fnm (ds) TT dp, dq,) ) (2.14)

where volume of integration Q(x) is defined by S < %, C < 0, and
dSjdt > 0.

An alternative form of the result may also be obtained from
(2.10) by using the equation

3n
v.VS =17, (2.15)
1

where
7, = (BH oS oH 35) dHd4S
i

op; . 3—91 - —; ' % dp,dq;

is the Jacobian of the transformation from (H,S) to (p,4,).
Substituting (2.15) in (2.10) and using (2.13), we find

3n

R{fa) =), ZL/ILI dHl—IdP;dqa, (2.17)

which is the form derived by the writer.* Itis equlvalent to carry-
ing out the indicated differentiation in (2.14) and is usually a more
convenient starting point for calculations.

(2.16)
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B. Ignorable Coordinates

In the absence of external forces, the Hamiltonian H(p,q) will
be independent of the position of the center-of-mass R and the
Euler angles w; and ¢;, corresponding to rotation of the system
about the total angular momentum L and its z-component M.
We may also expect the chemical state of the system and hence
the function S(p,q) to be independent of these coordinates. As a
consequence, the corresponding Jacobians will all be zero, and
(2.17) can be written

R(f1) = f p> T(f,i)dHAPdRdALdw dMdé;, (2.18)
where

N = =T = [ (ST e @19)

is the rate of flow of phase fluid across the surface S(f,i) for fixed
H, PR, L, w, M, and ¢, and

3n—5

@ =10 (ST apds  @20)

is the mean value of the density on the surface averaged with
respect to the flow rate.

If additional constants of the motion (corresponding to ignor-
able coordinates) are known, the averaging of p may be restricted
further. This will frequently be the case when the surface S{f,7)
is taken outside the region of strong interactions, and we shall
consider some specific examples of this later. In general, however,
no further reduction of expression (2.18) is possible without the
introduction of specific assumptions concerning the Hamiltonian,
the trial surface, or the density in the initial state, and (2.17) and
(2.18) are the basic equations for estimating reaction rates.

C. Electronic Degeneracy

In deriving eqns. (2.17) and (2.18), we have tacitly assumed
that the initial state of the system is non-degenerate. This is
rarely the case, and there are usually several electronic configur-
ations of the same energy which give rise to different interaction
potentials. It is therefore necessary to multiply the ra}é for a
given interaction potential (V) by the probability (f) that/a system
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in the initial state is moving on that particular potential curve.
This may be expressed
f=8lVo)g), (2.21)

where g(V,) is the electronic degeneracy associated with V, and
¢(7) is the total degeneracy of the initial state. For simplicity we
shall continue to omit this factor in our general considerations,
but it must be taken into account in any explicit calculations.

D. General Rate Constant

To remove the dependence of the calculated rates on the con-
centration of the reactants, it is customary to express the results
in terms of a reaction rate constant. The rate constant is defined
as the reaction rate per unit volume divided by the product of the
concentrations of the reactants. If the reaction is the result of the
interaction of » independent particles (where v < #), the reaction
is said to be of order », and the rate constant is given by

B(fi) = RUED/VITIM), 2.2

where V is the normalization volume in configuration space and
[M,] is the concentration of particles of type M, in the initial
state.

As a consequence of our assumption that the particles are
independent, the density p in the initial state can be separated as
a product of the densities p; for the individual particles. Thus
(2.4) for the total number of systems in the initial state can be
written

N(7) ZL(i)(ﬁpf)ﬁd%d% = Vv]f[[Mi]' (2.23)
Combining eqns. (2.22) and (2.23), we obtain
k(f1) = R(f,1)V*-1/N(i) (2.24)

as our expression for the rate constant of a reaction involving »
distinguishable particles proceeding at the rate R(f,7) in a volume
V. As can be seen from eqn. (2.6), R(f,2)/N(i) has the dimensions
of a reciprocal time, and hence (2.24) has the appropriate dimen-
sions for a rate constant. For (2.24) to be valid, the calculated
results must be independent of the normalization volume. As
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will be seen below, this means that interactions between the
particles must fall off sufficiently rapidly to make the reaction
rate converge or that an artificial cut-off must be introduced.

E. Equilibrium Rate Constant

To calculate a bulk rate constant by means of the above equa-
tions, one must know the density p on the surface S(f7). For
systems which are not in full thermodynamic equilibrium, this
requires a. solution of an appropriate master equation. However,
in many systems which are out of chemical equilibrium, it may
still be reasonable to suppose that the internal degrees of freedom
of the reactants are in local equilibrium and can therefore be
described by a Boltzmann distribution

p = poe HHT, (2.25)

This assumption has been made in virtually all existing theories
of bulk chemical reaction rates and leads to what may be called
equilibrium rate constants.

Combining (2.25), (2.24), (2.17), and (2.4) and integrating over
the center-of-mass coordinates, we obtain the following expression
for the equilibrium rate constant: '

Bif) =040 [ e (S JATIME TT dpdg, (226)

(£4) 1

where

3n—3
06 = V= [ e [Tapd, 227)
Qi) 1
is the classical partition function per unit volume for a system in
the initial state and

E=H — PY2M (2.28)

is the total energy in the center-of-mass. Note that the identi-
fication of Q(¢) as the partition function requires that the varia- -
tions of 5(f,7) be so restricted that the value of Q(¢) does not differ
appreciably from the usually accepted value of the partition
function. This criterion, in fact, determines the acceptable,;fange
of surfaces which may be used. /
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III. COMPARISON WITH CONVENTIONAL THEORIES

Before proceeding to the newer and more unique applications
of the Yariational theory, it is instructive to investigate its
relationship to some older and more familiar theories of chemical
reaction rates. Almost all of these are based on the assumption
of a Boltzmann distribution for the reactants, and of trial surfaces
separating reactants and products that depend only on the co-
ordinates in configuration space. The differences (which can be
substantial) between various theories are due primarily to the
particular trial surfaces chosen, and it is here that the variational
theory provides both a connecting link and a criterion for
selection.

A. Unimolecular Decay Theory

In the theory of unimolecular decay as developed by Slater,? it
is assumed that an activated molecule will dissociate when a
particular coordinate ¢, reaches a high value ¢. Thus the trial
surface is defined by

S=¢ —¢=0, 3.1
and the only nonvanishing Jacobian in eqn. (2.26) is
J1=0E[opy = ¢y. (3.2)

Substituting (3.1) and (3.2) into (2.26) and (2.27), we obtain the
high-pressure rate constant

. In—3
ve = 0| et gy [T ap i, 33
a1
where
3n—3
Q :feﬁE/kT 11 dp,dg; (3.4)
1

and E* is the energy on the surface ¢, = ¢. Equation (3.3) is just
Pelzer’s formula in the general form derived in Chapter 9 of
Slater’s book.

B. Theory of Absolute Reaction Rates

In the theory of absolute reaction rates as developed by Eyring
and his collaborators,® it is assumed that a chemical reaction can
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be described as a flow of representative points over a saddle point
in the potential energy of the system from a valley representing
the reactants to one representing the products. A reaction co-
ordinate ¢, parallel to the bottom of the valley is defined, and the
flow- rate through a surface perpendicular to ¢; located at the
saddle point is then calculated, a Boltzmann distribution for the
reactants being assumed. A variational version of the theory has
also been proposed by Horiuti,® who points out that the best
location for the surface is not necessarily at the saddle point but
rather at the point where the flow rate through the surface is a
minimum.

Following Horiuti, we introduce a surface S(f,7) between re-
actants and products that spans the potential energy valley. We
then chose as our coordinate system an orthogonal curvilinear
set of ¢’s with g, perpendicular to S(f,7). Under these conditions
the energy of the system is

E = %2u, + E*, (3.5)

where p, and u; are respectively the momentum and reduced
mass corresponding to ¢;, and the only non-vanishing Jacobian
in (2.26} is

J1=20E[opy = q,. (3.6)
Substituting (3.5) and (3.6) in (2.26) and integrating over p,, we

obtain

3n—3
PR W | 2 37)

2

where Q is given by (2.27). The integral in (3.7) is just the classical
partition function of the system constrained to the surface S(f,7);
ie.

3n—3
o* zﬁ(me_E'/“ 1;[ dp,dg;. {3.8)

If we now ‘‘quantize” our system and let Q* = Q¥i%"—* and
Q = Q%3 equation (285) takes the familiar form
3.7 w1y . 020, / (3.9)

associated with the theory of absolute reaction rates.
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As shown by Horiuti, the surface which minimizes the rate
constant 27 must satisfy the variational equation

80% = 0, (3.10)

which leads immediately to the condition
3n—3
(RT)0E*|og, = > pi', (3.11)
2

where the p,’s are the principal radii of curvature of the surface
S(f,7). . If S(f,9) is a Cartesian plane, eqn. (3.11) becomes

0E*[og, = 0V [0g; = O,
which locates the surface at the saddle point, as in the Eyring
theory. It is not clear, in general, how much the rate can be
reduced by employing more complicated surfaces, but Horiuti
has made estimates which indicate that, in cases where the barrier

height is not large compared to 27, effects due to curvature could
be significant.

C. Available Energy Theory

The available energy theoryis based on the work of Lindemann?
and Hinshelwood.® The basic assumption of this theory?® is that a
reaction can occur only for those collisions in which sufficient
energy is “‘available” in some number, v, of quadratic terms in the
energy of the reactants in the center-of-mass system. If all the
terms in the energy are included, this certainly gives an upper
limit to the reaction rate. The difficulty is that this usually leads
to a gross overestimate of the rate, and v must be restricted to a
smaller number. At this point the theory becomes reduced to a
sort of guessing game, in which even for simple molecules it is
possible to obtain results that vary by orders of magnitude
depending on the choice of v. In spite of this objection, the theory
is useful for correlating experimental data and setting limits for
unknown rates of complex reactions.

The appropriate trial surface for this theory is deﬁned by the
constraints

S=r—a=0 ' (3.12)
and

220 + S > D, (3.13)
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where @ is an assumed collision diameter, » and $ are the radial
separation and conjugate momentum, g is the reduced mass for
the collision, #; is a generalized coordinate, f; is the coefficient of
%% in the energy equation, and D is the energy required for a
reaction. In addition to (3.12) and (3.13), we also have the energy

equation
6n—7

E = pi2u + 3 pd. (3.14)

Note that in (3.14) we have tacitly assumed that the interaction
potential at » = & may be neglected. With these constraints, the
only non-vanishing Jacobian in (2.26) is J; = 0E/dp = #, and the
available energy rate constant can be expressed

6n—7
B = 01 f e"ERTJE TT dx,, (3.15)
2
with
3n—-3
0=V j e~ ERTdpdy T dp dy,. (3.16)
2 ;

Expressions (3.15) and (3.16) can easily be integrated by using
(3.12), (3.13), and (3.14), and this leads to the well-known result

B — (SkT) -1 (’U + 1)f e~ D2 gy (3.17)
Tl 2 DIAT

which for 2#7°/D < 1 becomes approximately

(w—1)/2
kY~ ma? (8::;) -1 (”;r 1)(k—DT) e~ (3.18)

where I' is the I'-function.

In concluding this Section, we note that the above calculation
does not represent a rigorous application of the variational theory
because the surface » = a does not completely divide the reactants
from the products unless the interaction potential is assumed to
be sharply cut off at 4. That is to say, our surface has “holes” in-
it through which the systems can ‘‘leak” without contributing to -
the integral in (3.15). We cannot claim, therefore, that (3.17) is a
rigorous upper limit and vary our a to obtain a minimum rate.
If we did we would, of course, get zero for an answer. A f fther
criticism of (3.17) which becomes important at high tempeyatures
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is that intergrals over the internal degrees of freedom of the
reactants/have all been extended to infinity, and no account is
taken of'the fact that finite potentials are involved. :

/

D. Statistical Theory

In the opinion of the writer, the most serious criticism of the
available energy theory as outlined above is that it fails to include
explicitly a factor giving the reaction probability when the energy
is available. This omission is responsible for many of the apparent
difficulties and inconsistencies which arise in the practical applica-
tion of the theory and, in 1958, led the writer to propose a statis-
tical theory of reaction rates in which the reaction probability
was assumed to be proportional to the rate of flow of phase fluid
across the boundaries of a collision complex into the product state.
Before this, the same assumption was used by Hart, Gray, and
Guier! in order to estimate branching ratios for atomic excitation
by electron impact. Recently, a similar quantum-mechanical
theory was proposed by Light,*? that in its original form failed to
satisfy detailed balancing and was subsequently revised by
Pechukas and Light®? to a form representing a special case of the
writer’s more general theory.1

Fundamentally, the statistical theory is based on scattering
theory in the strong-coupling approximation,’ and a derivation
of the theory from first principles has been given by Eu and Ross.!®
Tt is also closely related to the compound nucleus theory of nuclear
reactions'* and Fermi's statistical theory of meson production.®

To obtain an expression for the statistical rate constant, we
postulate the formation of a collision complex Q(*) through which
the reaction passes. Let S(f,*) be that part of the surface of the
collision complex through which the reaction products enter the
final state f. Then the partial rate at which products are formed
in this state with fixed total energy H, momentum P, and angular
momentum L, obtained from (2.18), is <p),I'(f,*), and the
probability of forming this state is exactly

P,(H,P,L) = <P>ff‘(f,*)/§<p>,-1‘ (7,%)- (3.19)

Note that in writing (3.19), we have made the assumption that
the reaction probability is independent of the position of the
complex and the orientation of the total angular momentum.
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The basic assumption of the statistical theory is that the mean
value of the density {p) on the surface of the collision complex
is the same for all product channels. With this assumption, (3.19)
becomes

P,(HP,L) /21“ (7,%), (3.20)

which is independent of the manner in which the collision complex
was formed and depends only on the location of its boundaries
and the Hamiltonian H determining the flow field of the phase
fluid. The statistical rate constant may now be obtained by
inserting (3.20) into (2.18), integrating over the ignorable co-
ordinates R, and substituting the result into (2.24). This gives
the expression

£ :;(:,) L o P g*)TF(’:)*) AHAPdLdw,dMd,, (3.21)

which is equivalent to equation (5) of the writer’s previous paper.*

We now consider the important special case in which the
collisions are binary, and the boundary of the collision complex is
defined by the equation

S=7—2z) =0, (3.22)

where » and [ are the radial separation and orbital angular mo-
mentum of the reactants, and z(/) is the position of the maximum
in the effective potential V’(r) governing the radial motion of the
reactants. We further assume that the interactions are negligible
for» > z, sothat the internal energy £’(/',&) and rotational angular
momentum [’ of the molecules are constants of the motion.

The Hamiltonian can then be written

H = P}2M + E'(I''a) + E;, (3.23)
where
E; = p¥/2u, + B2up® + V() (3.24)

is the relative kinetic energy of the collision partners, p is the

radial momentum conjugate to 7, u, is the reduced mass for the

collision, and a stands for the set of action variables /
(3.25)

%, = $Prdqs
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required to complete the description of the reactants or products
in the state/s.

For the/surface defined by (3.22) and the Hamiltonian (3.23),
the only” non-vanishing Jacobian in (2.19) and (2.20) is J; =
0H|[0p = p/u, and the mean density {p); and flow rate I'(j,*) in
(3.21) can be written explicitly

3n—8
(> = T-1(,%) f pdldwdlde’ B do, (3.26)
S(i,%) 1
and
3n—8
(%) = f didwdl'do’ B da,, (3.27)
S(4,%) 1

where @ and o’ are the Euler angles corresponding to rotation
about / and 7, and the surface S(7,*) is defined by the set of
constraints

r=z  $>0, I+U>L>|—0. (3298

Note that (3.26) and (3.27) contain implicitly the fact that the
Jacobian of the transformation from m, ¢, m’, ¢" to L, o, M, ¢,
is unity, where m and m’ are the z-components of / and /, and ¢
and ¢’ are the corresponding Euler angles corresponding to
rotation about the z-axis. We may also obtain an explicit expres-
sion for N(7) from (2.4):

3n—8
N(z) = VJPdepdrdl’dw'dm'd¢/ E daz‘k: (3‘29)
1

where we have integrated over dR. ‘

To compare these results directly with those of Pechukas and
Light, we require the differential rate constant A%(H,E, [ el a,)
for reactions having fixed total energy H and relative kinetic
energy I, in the initial state, and specified values of rotational
angular momentum /* and action e in the initial and final states.
This is easily obtained from our integral expressions by simply
deleting these variables, and we find, on combining (3.21), (3.26),
(8.27), and (3.29) and integrating over angles,

' *® ;%
FS(HLE I a0, _ﬂﬁ f aram YIET) g g

slityly o) = Qu.E, T'(*)
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where v; = (2F[u;)? is the relative velocity for the collision,

Wim =, a 3.31)

is the differential flow rate of phase fluid into the state j, and the
surface S(7,*) is defined by (3.28) together with (3.23) and (3.24).

To ““quantize’” the system, it is simply necessary to measure
angular momentum in units of %, action in units of %, and convert
integrals to sums. Thus (3.30) becomes

2 ’ 77,21) y(f’*)y(i’*)
B(HEJywdya) = ooy 2 T (83
where
= SX(LE,L), (3.33)
=3 y(/%), (3.34)
I oy

and the characteristic function X, determined by the constraints
(3.28), (3.23), and (3.24) is

Ll ESL—, E > Vi)
0: otherwise (3.35)

1=

Since the cross section ¢ for a reaction is simply %/v, eqn. (3.32) is
identical with eqn. (7) of Pechukas and Light.'®

It is interesting (and comforting) to note that while the results
obtained by the writer and Pechukas and Light are the same, the
methods used to arrive at them could hardly be more different.
Pechukas and Light start with a quantum-mechanical formu-
lation and introduce an arbitrary ‘‘measure,” the character of
which is then determined by detailed balancing arguments. This
leaves the physical interpretation of the ‘“measure’”’ somewhat
obscure. On the other hand, the writer starts with a classical
approach and immediately identifies the “measure” as the rate
of flow of phase fluid into the various states. This gives a clear:
physical meaning to the theory In this connection it may be
observed that it was the omission of the flow velocity Wthh led
to the detailed balancing failure found in Light’s original paper 12
The same error was also made by Horie and Kasuga.?
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The conditions under which the statistical theory may actually
be valid jn chemical reactions are not yet clear. In the writer’s
work on’ three-body atom recombination,® it has been found
unsatisfactory. On the other hand, Pechukas and Light have
reported some success in applying the theory to exchange reac-
tions involving ionic molecules. There is also the possibility that
the theory may be a reasonable approximation for reactions
involving polyatomic molecules. In any case, the theory is an
improvement over the available energy theory if only because it
satisfies detailed balancing.

IV. THREE-BODY RECOMBINATION AND
DISSOCIATION

One of the most important applications of the variational theory
which has been made to date is to the problem of three-body
recombination and dissociation of atoms and ions. This problem
has been treated by a variety of methods, and we shall review
several of them to illustrate how the calculations are made and to
permit a comparison of the results. For the sake of uniformity
and to remove the strong dependence on the Boltzmann'factor,
we shall give our results in terms of three-body recombination
rate constants. The four rate constants that we shall consider in
detail are the (1) available energy, (2) three-body collision,
(8) Wigner, and (4) barrier-rate constants. We shall omit detailed
consideration of the statistical rate constantl® because the cal-
culations are rather complicated, and the theory is asymptotic to
the available energy and three-body collision theories at high and
low temperatures, respectively, and varies smoothly in between.

A. The Model

All of our calculations will be made for a system of three distin-
guishable particles. We assume that the motion can be described
classically and that the full three-body interaction potential ¥, is
known. We further assume in the case of atoms and molecules
that electronic transitions do not occur during a collision, so that
V,is invariant. The canonical coordinates p,, 715, la, W13, M9, P1o
W1H be used to describe the relative motion of particles 1 and 2
and the coordinates ps, 7,, I3, w,, M, ¢3 to describe the motion of
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particle 3 with respect to the center-of-mass of the ““molecule”
composed of particles 1 and 2. In this set p and » denote the radial
momentum and separation, / and w the angular momentum and
conjugate Euler angle, and m and ¢ the z-component of / and
conjugate Euler angle. These coordinates, which are shown in
Fig. 1, are closely related to the Delaunay elements!® used in
astronomy and in the old Bohr quantum theory. '

(b)

Fig. 1. Coordinates used to describe the relative motion
of three particles.

The Hamiltonian in the center-of-mass system can now be
written
E = Ey, + p5/2us + L2035 + Vs, -, 4.1)
where /

Eyy = P%z/zﬂm + l%z/zﬁ‘lzy%z + Via (4.2)
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is the energy of the molecule,
Vo=V, — Vi (4.3)

is the interaction potential, g is the reduced mass for the collision,
and V, and y,, are the interaction potential and reduced mass for
the molecule.

To describe an attractive interaction between atoms, we shall
use the Morse potential

Vaulr) = D[(1 — e~Ar—rd)2 _ 1]. 4.4)

The corresponding ‘‘effective potential” governing the radial
motion of the molecule is

Vir) = B2uw? + Vg (7). (4.5)

The general characteristics of the ‘“‘effective potential” for a
sharply cut-off interaction such as the Morse interaction are shown

ZDM
Oy
8, F-H-
I
1
i
Z
b
8- I/———r-'— T
o) H : 1 /
1 i2
l77'4.2,(”2
]
| Vi
1
1
0 1
MF re
] ! ] ! ) |
3 5

7 2 1] 13 15 7

Fig. 2. General characteristics of the effective potential
for a Morse interaction.
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by the curves in Fig. 2. If / is not too large, there is a relative
maximum, the rotational barrier, at a radius z given by

(@V'[dr), = AV yldr — B|wr?), = 0. (4.6)

If we let B denote the height of the rotational maximum, then it
can easily be shown, by using (4.5) and (4.6), that

ABdl® = (2uz%)L. (4.7)

This equation has been found very useful in dealing with collision
problems.

As in our previous calculations, we shall assume that the
internal state of the system can be described by a Boltzmann
distribution p = py exp (—E/kT) and compute equilibrium rate
constants.

B. Available Energy Rate

We shall first calculate a rate constant for atomic recombin-
ation based on the available-energy theory described in Section
IIT C. However, in our present calculation, we shall use a some-
what more realistic trial surface which takes into account the
finite depth of the Morse potential. This surface S(4) is defined
by

S=r,—a=0, (4.8)
where a is a characteristic collision diameter that may be taken
roughly as the radius at which the magnitude of the interaction

potential V4 in (4.1) is equal to 27. In addition we require that
the molecule be bound in the initial state, so that

Euy<B<B, %<z (4.9)

where B, is the maximum value of B; we require further that
the energy to dissociate be available, so that

E >0. (4.10)

The equilibrium rate constant for this surface can now be.
obtained from (2.26) and after integration over angles can be
written \ -

B = fm)iQ-t| e EMTr dE dIRdI2dE, /4.11)

S14)
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where
f = 81/8:18> (4.12)
is the electronic degeneracy factor (2.21),
’ Q = (@mumgh T) 2 2mugh T, (4.13)

and the period 7, for a rotating Morse oscillator can be approx-
imated

T1a A [2m2p,,/fH(B — Elz)]i- N (4.14)

The major contribution to the integral in (4.11) comes from the
region of phase space in the vicinity of the minimum in the Morse
potential, and a very satisfactory approximation to (4.11) can
be obtained by setting 7, in (4.2) equal to 7,. This gives

4772\(2D\* 8 D (D
k= 2(—i) (—) C= T (— ) 4.15

r=Ir\ N\ e er S (4.15)
This expression for the available energy recombination rate
constant is valid for all values of 27/D and is not restricted to
kT|D <1 as is the conventional available-energy recombination

rate constant obtained by detailed balancing from (3.17). A
plot of 24 as a function of 2T is shown in Fig. 8.

C. Three-body Collision Rate

Although a three-body collision may occur in several ways, for
our present purpose we shall define it as a collision of particle 3
with a pair of free particles 1 and 2 orbiting at a separation 7,
less than the radius of the rotational maximum z The corres-
ponding trial surface S(T) is determined by the constraints

S=r;—a=0, s K5, E,>=B (4.16)

with the auxiliary conditions
E=0, B < B, o (4.17)
and the three-body recombination rate constant obtained from

(2.26) after integrating over angles is

B = fem o) | e At (419
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Fig. 3. Dimensionless comparisons of available energy k7, three-

body collision &7, Wigner %)(0), and barrier £?(0) recombination

rate constants for a Morse potential with g7, = 3. Note that &7

and £7 scale as u;~%, while £7(0) and £2(0) scale as u;,-%. See text
for definition of parameters.

where () is given by (4.13) and the effective collision time 7, can
be approximated
T1a = [2pyo/3(Ere — B)*. (4.19)

The integration of (4.18) with respect to dl3, dp3, and dE;, can be
carried out exactly and yields

b3
o =f(§7)2 (;—f—ﬁ) [ermmma, (4.20)
12 3

To carry out the remaining integration, we substitute the variable
z for I, using (4.7), so that (4.20) becomes

2 b ,
k,T:f(ZZ“) (J;—T) f e-B/szz‘fi—f dz. / (4.21)
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We now observe that, for sharply cut-off potentials such as the-
Morse potential, the factor (dBJdz) exp (—B/kT)in the integrand
of (4.217&5 a strong maximum at the position z,, defined by

(d)d=)[(dBdz) exp (—BJkT)], = O. (4.22)

Setting 22 = z2 in the integrand of (4.21), the remaining inte-
gration can be carried over dB and gives

2 3 b3

BT = fra? (4”22)(2—D> 2 (k—T) (1 —e~BwhT) (4.23)
B/ \ps) Ve \ D

It may be noted that this expression for the three-body collision

rate constant is substantially identical to that obtained from

Rice’s theory' of dissociation by detailed balancing.

A plot of the three-body collision rate constant is shown in
Fig. 3, and it is seen to be smaller than the available-energy rate
constant for all values of 27/D < 3. Thus the available-energy
rate constant cannot be regarded as a good approximation in this
range in spite of the appealing fact that it gives a negative temper-
ature coefficient more nearly in agreement with experiments.

For kT|D > 3, however, the available-energy theory does give
a lower limit than the three-body collision theory. The physical
reason for this is that, for small values of 2T/D, the phase space
available to three free particles is much smaller than that available
to two, so that decay of the collision complex into three particles
becomes the rate-limiting step. For large 27T/D the reverse is
true, and two-particle decay is the rate-limiting step. The stat-
istical theory!® of reaction rates automatically takes this into
account and, as already mentioned, provides a smooth transition
between the two expressions (4.15) and (4.23). It should be noted
that, strictly speaking, neither of these expressions is a rigorous
upper limit to the true rate constant because the trial surfaces
used are “leaky”. Nevertheless, they are sufficiently good for
practical purposes, and the smaller of the two should give the
best approximation to the true rate constant.

D. Wigner Rate

Wigner? obtained a rigorous upper limit to the three-body
recombination rate constant by calculating the flow of molecules
through the surface E,, == 0. This is the first of the surfaces
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considered that divides molecules from free atoms without
“leaks”. It is also the first to depend on the momentum co-
ordinates and, therefore, to involve explicitly the form of the
interaction potential V.

In our present calculation we shall use a slightly more general
trial surface S(W¥) defined by

S=FE;,+ E,=0, E>—E, (4.24)

where E, is a constant that we shall later vary to obtain the
minimum rate. For this surface there are two non-vanishing
Jacobians in our general expression (2.26) for the rate constant.
These are

OE 0E,, OE 0Ey, _  pu Vs

it . Sttt S 4 . 4.25a
Jx Op1a Oryp Ora Opra Mz Oryp ( )
and
OE 0Ey Ly 0V
S L—= 4.25b
Jx 0wy Olyy /‘127’:%2 Owys ( )

Substituting (4.25) into (2.26) we obtain

, Vs oy 0V
V(R — fO-1 —E/kr(Plz 3 i 3)
Y(E) = Q7 e -

|]512| % ;1—2‘ Owyy

X drypdlygdwysdimngoddysdpodrsdlsdogdmydd,  (4.26)

where

0
Yir = 1o 2 = [ —Eq — Vi [y — 17 (4.27)
12
and Q is given by (4.13).
To integrate (4.26), it is convenient to make the transformation

Awyo@miggddrs = l13dP158054 COS a, (4.28)

where 85, B3, and « are the angles shown in Fig. 1 which determine
the relative position and velocities of the particles. Equation
(4.26) can then be written -

EV(Ey) = fQ1 e—EIRT ( P12 9_1/;3 _VLC_O.S__/SW a_If-_i’») L
S(W)

| Pral 0112 6T " oy
X dpsdlsdwydmadpsdfadf dldrdrsd cos g (4.29)
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and the integration over the first eight variables can be carried
out conveniently in the order given. This yields

8x (2kT\? ovV;\? 1 oV,\2)*
VAT I T
= TR g ) L o) T\
% T (g %) (—Ey — Vip)r3adrisridrsd cos «, (4.30)
where '

T(n+1,x) = f * ynevdy (4.31)

is the incomplete I'-function.

The expression in square brackets in (4.30) can be recognized
as the magnitude of the force acting to change the energy of the
molecule. The two terms correspond to vibrational and rotational
transitions, and we note that, if the interaction potential V', is
assumed to be spherically symmetric, there will be no contribution
due to rotational transitions.

1. Atomic recombination. To proceed further we must specify
the interaction potential V. For the case of atomic recombination,
we assume as a first approximation

Vg & Via(ris) + Vas(res) =0 (4.32)
and observe that, if V;; and V,; are sufficiently steep, the inte-

grand in (4.30) will possess a strong maximum on two spherical
shells with radii a,3 and a,5 defined by

q (@/dri3)[(AV13/dr15) exp (—Vya/ kT]am =0 (4.33a)
an
(A[r35)[(AV g5]d7a5) €xp (—Vos/kT],, = 0. (4.33b)

This “dumbbell model” permits one to divide the integral in
(4.30) into two parts corresponding to integration over the two
ends of the dumbbell, so that

kY (Eq) = ER(Eq) + ki(Eq), (4.34)
where
W . f8= (wkT)*( My )f _E. _V
k’I (EO) a (kT)2 21"12 my + Mo _E0>Vw91m>01( 0 12)
X WVis eBo— VKT 42 gy vidrsd cos 0y, (4.35)

dris
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and we have made the transformation

73drsd cos o = rEadriad cos 0. (4.36)
The angle 0, is shown in Fig. 1(b), and 0,,, is defined by
cos Oym = (a3s — aly — 75)/2a15710. (4.37)

kRY(E,) is given by the corresponding expressions with the
subscripts 1 and 2 interchanged.

The integration over dry;d cos 0; may now be carried out approx-
imately by setting 7}; = a%; in the integrand of (4.35), and we
find

Wy = am () eror [y — vt

—Eg>V,
X [a3gmi (1 — cos 0;,) + azemz (1 — cos 0,,))dr,, — (4.38)

where we have added ZJ(E,) and kj5(E,). This is equivalent
to the result obtained by Wigner.2

The remaining integration over dv, may also be carried out
approximately by observing that for a Morse potential (4.4) the
factor (—E, — V3,) has a strong maximum at », = 7, Expanding

the integrand about this point, we obtain £,
4772\ (2D\t 4 (D)*( y)s/z
2 ! Eo/kT
kY (Ey) = fma ( 3 )(/412) 3\/77 T 1 e™o* (4.39)

o
where o
2
a? — Mgy (Ayg + 7,02 — ads] + myagy[(dgy + 7,)F — a3
2(my + my),
is the square of an effective collision radius.
For Ey L D, k)(E,) is an increasing function of E,, and since
E, must be greater than zero to avoid a “hole” in the trial surface,

the best choice of E is the one made by Wigner, namely, zero,
and (4.39) becomes simply

ro- (L () o

A plot of this expression is shown in Fig. 8. For p, ~ ys, the
Wigner rate is smaller than the available energy rate gver the
entire temperature range shown and smaller than the three-body

(4.40)
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collision rate for A#7/D z .15. For light third bodies, i.e.,
ps K typ, the Wigner rate will be the best approximation to
somewhat/lower temperature, but the three-body collision rate
will still give the smallest limit over most of the range 27°/D << 0-1
where experiments have been performed.

2. Electron vecombination. A calculation similar to that des-
cribed above has also been made by Makin and Keck® for the
three-body electron recombination process 4+ + e+ e— 4 +e.
In this case the integral in (4.29) diverges linearly with 73 owing
to the long range of the Coulomb forces involved, and a cut-off
must be introduced. Since the energy transfer is, in general,
small for collisions in which the product of the angular frequency
w of an oscillator and the collision time 7 is large, a reasonable
cut-off is wr = 1. The integration of (4.29) may then be carried
out with the aid of a computer and the results represented by an
expression of the form

3
#lED = (é“)s(SkT) (& ) (SE0HT 4 5eBohT).  (4.42)

am,/ \E,

This rate constant has a minimum at Ey /27T = 5/2, which may
be interpreted physically as giving the location of the rate-
limiting step or “bottleneck” in the electron cascade toward the
ground state. Similar theoretical results have been obtained by
Bates, Kingston, and McWhirter,?! and supporting experimental
evidence is provided by the work of Hinnov and Hirshberg.??

E. Barrier Rate Constant

The barrier rate constant was introduced by the writer? to take
into account the effects of the rotational barrier. It involves
passage of a molecule through a trial surface a fixed energy E,
below the top of the rotational barrier. This surface S(B) is
defined by the constraints

S=FE,— B+ E;=0, E > —E,, (4.43)
and gives two non-vanishing Jacobians in (2.26), namely:

OE 0y, 0L P Vs (4.442)

- Op1a Orp Aaﬁlz - Pya O71p

2z
975,

J1
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and

oF 3(E12—.B)=_(112 dB)% (4 44D)

Jo=— @ ‘ Oha t27 T - ﬁlz

Substituting (4.44) into (2.26) and making the transformation
(4.28) discussed in Section IV D, we obtain the expression

Vg ypcosfyy OV
RB(E,) = fQ e~ EIT (& 8 _ /B 12 _.i”) ]
( 0) fQ s(B) Iﬁml 3712 1,12 30( 12

X dpodlydeydmyddydBydBsdlydriadryd cos o,  (4.45)

dwys,

where
(1 — Zﬂlzyide/dl%)
7. ,l ,E = )
ve(riwhe Eo [2M127§2(B — Eq — Vi) [l — 1]é

which is identical in form to (4.29).

(4.46)

Following Woznick,?® we integrate (4.45) exactly over the first
seven variables, obtaining

2rT\* 3|b+u]—(b+u))
B e~b—u _
RE(E,) = f4 ( :“12) L>Oe r (2, 5

dadyypdryd cos o,  (4.47)

P Fzzyggé‘g%t
3

where ¢ = E kT, b = B|RT, u = V,4/kT,

Org  yp COS 907,

FlrporssEg) = 4 (n a“), > 0 (4.48)

8712 7/12
_ 712\ [ (1122 B — Ey — Via(r10) :l—%
e e e i
(4.49)
and
7o O 19 O
sin=1 |22~ o
Vi 0%1s ve Oa| :
g = (4.50)
. y o
2 VB s )

Note that we have transformed from di;, to dz by using (4.7).
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We now assume, for simplicity, that du/dr; has only one zero,
corresponding to a single minimum in the interaction potential of
depth #., o{,rlg) at a radius 73.(e,7;,). Under these conditions, the
factor

ab | ou
dz|org

o=0- "F(B [b + u| — b—l—u))
2 2

-

in the integrand of (4.47) will have relatively strong maxima at
the points (z,,2,) and (z,,4_) in the (z,7) plane defined by

0 3|0+ ul — b—{—u))dbj' _
&[ F( 3 Zelne, =

and (4.51)
] [ “F(3 [0+ u| — (b + u)> ou :l _0,
29,84,

oy 3_”;
where a_(o,715) > ¥gm(ot,719) > a_(a,7;,). 1f we further assume that
the remaining factor Fz%% varies relatively slowly, we may
evaluate it at the points (z,,4,) and 2,,a_) and express (4.47) in
the form ‘

289 = st () 10,20 + QBN — e (432

where

2

Q (Ey) = f F(t15,0,0,,%5,Eq)G a% d cosadry,,  (4.53)

(1]
A = >
) © bm(Eo) [b+ u] — (b + u))
. o~ bplEy—-1 . —b—u
wﬂe )ﬁjﬁ dbe 42 -
= e'n [[(Fun) 71 (3) — el /(1 — e~y (4.54a)
and
G+(Eo) =
__2_ BBy _1f0 fbm(Eu) —b—u (§ [b 4 u| — (b + ’“))
o (1—e ) _umdu A dbe r % 5
— G_(E,) — 1. (4.54b)

n (4.54), b,(E,) is the dimensionless height of the rotational
barrier for which E, is just equal to the depth of the minimum in
the effective potential curve, and we have tacitly assumed that
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bu(Eg) 2 #m Notethat Q,(E,) is an effective interaction volume
of molecular size.

Equation (4.52) is the general expression for the barrier rate
constant. It is valid for all interaction potentials having at most
a single minimum and sufficiently sharply cut-off to make the
integrals convergent.

To proceed further we must now specify the nature of the
interaction potential.

Dumbbell model. The only detailed calculations of the barrier
rate constant (4.52) which have been made to date use the
“dumbbell” model Vg = Vy5(ry3) + Vas(rss) and are restricted to
the case where the attractive minima in Vi3(r5) and Vg(ry,) are
not deep compared to 7. As discussed in the preceding Section,
the integral in (4.53) can then be expressed as a sum of contribu-
tions from the two ends of the “dumbbell”

Q(Ey) = 4n(z,(Eg) — 2,(Ey)] [“?%(Eo) + aj.(Ey)],  (4.55)

where 2,(E,) and z,(E,) are, respectively, the inner and the outer
turning point for a Morse oscillator with an energy £, = B — E|
and a rotational maximum at z, = 2,(0). a,.(E,) and a,_ (E,) are
effective radii given by

a3 (Eo) = mam; ‘a3, (Eg)Gi(Ey), J =12 (4.56)

for collisions with the two ends of the dumbbell. The factor
¢;.(E) in (4.56) is a slowly decreasing function of E,, which must
be calculated numerically and for most molecules of interest is
approximately 1/3. It is defined by the equation

¢;.(Eo) = % [22(Eg) — Zl(EO)]_lf H(0;m,y5)dr12,
where

sin2 0 : cot2 § > y%

__cosé ) cos g
|cos 0 |cosf |

(1 + y3)t (1
H(0,yp) = 0

% — cot? )} -
2{0 4 3 tanms BB 2000

(1 73)F cot 0 (458)

. t 0 ) ./
[sm—1 % — (¥% — cot? ) cot 0} sin? 0}: cot}@ < vh
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and 6,, and yg are given by (4.37) and (4.49) with z = z,. For
0 ~ =2, H~ (1 + ph)t.
Combinjhg (4.52), (4.55), and (4.56), we obtain the barrier rate
constant/in the form
B ) 5 8rT
Ry (Eo) = frna*(E,)(4m23) [22(Eo) — 21(Eo)] | —
- 72

3
) (l J— e_bm(Eo))eS’
(4.59)

where

2 ﬂ%3_ ag3—
a?(Eq) = s e -Gy -+ " $o Gy
2

1

afsy o ):l
G Ly, G 4.60
(26 + B2 0.6u) | o)
is the square of the effective collision radius.

The functions necessary to compute k5(E,) for homonuclear
molecules interacting with repulsive or only weakly attracting

1.0 - T T T T
A
o8 o] -
A
E e}
W AN
: 0.6 (o] o _1
e
ms
™ o]
o %4r k10 -
.
g [} 1
0.008 1= (/D)2
0.055 & I
N
ool 0:350D (Em)' i
’ 1SBr,<7
0 1 L | L 1
1073 1072 10~1 i
END

Fig. 4. Variation of the factor £Z(E) defined by eqn. (4.59) with

E|D for several values of 2T/D. Note the dependence on £T/D

is quite weak. The curve is the classical analogue of the square of
the transition matrix elements for a Morse oscillator.
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third bodies have been calculated by Woznick® and the writert
and are summarized in Fig. 4 and 5. These functions may also
be used for heteronuclear molecules whose: force fields are only
slightly asymmetric.

For most molecules 27(E,) has a weak minimum a fraction of
kT below the dissociation limit, and it is an excellent approxim-
ation to evaluate 22(Ey) at E, = 0. A comparison of £?(0) with

(a) 3

Blzz-2)¢

(b) 100

(B2)%1-e®m) B 2

53
T

L S | A S S S 1 I B |
0.01 ol 1.0

8 k10
Fig. 5. Parametric curves for computing the barrier rate con-
stant £%(0) for the surface tangent to the top of the rotational
barrier.

the rate constants calculated previously is shown in Fig. 3., For
J12 ~ Ug it is less than either the Wigner or available energy rate
constants and of the same magnitude as the three-body collision
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rate constant. It is much less arbitrary than the three-body
collision rate constant, however, since the effective collision volume
is explicitly related to the interaction potential. This permits
one to/g:ompare attractive and repulsive potentials and to investi-
gate the relative contributions due to rotational and vibrational
transitions. For example, one can see immediately from (4.54)
that potentials having an attractive minimum will give a strong
negative temperature coefficient for k7 < V.

The barrier rate constants agree quite well with flash-photolysis
experiments on recombination in various gases near room temper-
ature but overestimate the dissociation rates observed in shock
tubes at high temperatures by a factor of from 3 to 10. This is, of
course, not too suprising since the barrier rate is only rigorously
an upper limit. What is somewhat surprising (and disappointing)
is that more detailed investigations have shown that this effect
can not be attributed either to recrossing corrections® or non-
equilibrium?3 near the dissociation limit. The writer has therefore
been led to the conclusion that it may be due to a failure of the
“dumbbell model” which undoubtedly overestimates the angular
asymmetry in the interaction potential and, therefore, overesti-
mates the contribution from rotational transitions. Since rota-
tional transitions dominate at high temperatures,® this could
explain the effect. Failure of the “dumbbell model” would, of
course, occur if Vi, == V,a(r13) -+ Vagl#e). This is quite likely, and
calculations of the barrier rate constant with more realistic
potentials should be made. In particular, the case of strongly
attracting third bodies is badly in need of investigation.

V. CORRECTIONS AND EXTENSIONS

In addition to providing a systematic method for estimating
rate constants, the variational theory is also a convenient starting
point for the detailed numerical investigation of collision processes
by Monte Carlo methods. The technique involves the random
sampling of trajectories crossing the trial surface, followed by
numerical integration of the equations of motion both forward
and backward in time to determine the complete history of a
collision. By sampling with a weight proportional to the local
flow rate p(v.n) across the surface, one obtains a statistical
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distribution of trajectories which reflects their a priors contribu-
tion to the reaction rate. Further, by chosing surfaces which pass
through the reaction zone and integrating out, one can terminate the
integrations as soon as the interactions become negligible. Both
these factors contribute to the overall efficiency of the calculations,
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Fig. 6. Fraction of trajectories corresponding to a reaction as
a function of a parameter y for temperature 27/D = 0-01 and 0-1
and surface E[RT = 0, 1, 2, and 3. The points represent calcula-
tions made for I, - He, I, 4+ Av, O, + Ar, O, + Xe, and
H, + Arinthe order of increasing pg/p,,. The statistical accuracy
of the data varies from 5 per cent to 10 per cent. Individual
points may be identified by calculating y from pafu,, and E[RT.
The correlation parameter y was arrived at empirically but is very
nearly the adiabaticity parameter wr for the collisions. The
curve has the form expected for a linear harmonic oscillator
subjected to an impulse of duration -.

which is typically very much greater than that obtained when
one samples on surfaces outside the reaction zone.

Monte Carlo methods were used by the writer* to investigate
the recrossing correction for the trial surface at the top of
the rotational barrier and extended by Woznick?® to surfaces
below the barrier. Calculations have been made for/ the
systems H, + Av, Oy + Xe, Oy + Ar, I, + Ar, and I, +/He at

9
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temperatures, 27 /D = 0-01 and 0-1, and for surfaces Ey/kT = 0,
1, 2, and/3. The recrossing corrections are summarized in Fig. 6
which s}{ows the fraction of reacting trajectories as a function of a
parameter y which is closely related to the product of the angular
frequency w of the oscillator and the collision time +. It can be
seen that this parameter correlates the results quite well and that
the corrections are essentially temperature-independent. This
was the basis of our statement in the preceding section that re-
crossing could not account for the negative temperature coefficient
observed in most recombination reactions.

One of the most important facts to emerge from the calculations
was that the average energy transfer in molecules undergoing
dissociation or recombination is less than }£7T. “This was a surg
prise to the writer who had previously thought that large energy
transfer would be favored owing to the high velocity acquired by
the attracting atoms as they approach one another. The reason
why this is not the case is that most of the collisions with the
third body occur at a time when the atoms are only weakly
interacting because of the larger volume of configuration space
available for distant collisions. An important corollary is that
detailed conclusions about atomic collisions based on square well
or truncated harmonic oscillator potentials can be grossly in-
correct since these potentials have no tails where weak interactions
can occur. This point is made to emphasize the need for using
realistic potentials in calculations of atomic collision processes.

There is, of course, a wealth of other information about atomic
collision in the results, but a discussion of this is outside the scope
of this paper. The general conclusion which the writer would
like to draw is, however, that the variational theory supplemented
by Monte Carlo trajectory calculations is a powerful tool for
investigating atomic collision processes. It is also felt that the
most important weakness in the present calculations is due to the
approximate potentials used, and it is hoped that further investi-
gations in this area will lead to significant improvements.

VI. ACKNOWLEDGMENTS

The writer acknowledges the encouragement and support of A. R.
Kantrowitz, Director of the Avco-Everett Research Laboratory,



VARIATIONAL THEORY OF RATES 121

where much of this work was performed. This review is based
in part on a lecture presented at the Summer Institute on
Chemical Physics held at UCSD, La Jolla, during August 1965.
Its preparation was supported in part by the Advanced Research
Projects Agency (Ballistic Missile Defense Office) and technically
administered by the Fluid Dynamics Branch of the U.S. Office of
Naval Research under Contract Nonr-1841(93).

D OO N

o2}

10.
11.
12.
13.
14.

15.
16.
17.
18.

19.

20.
21.

22,
24.

25.
26.

References

. Marcelin, R., Ann. Physique, 3, 120 (1915).

. Wigner, E., J. Chem. Phys., 5, 720 (1937).

. Horiuti, J., Bull. Chem. Soc. Japan, 13, 210 (1938).

. Keck, J. C., J. Chem. Phys., 32, 1035 (1960).

. Slater, N. B., Theory of Unimolecular Reactions, Cornell Univ. Press,

Ithaca, N.Y., 1959.

. See e.g. Glasstone, S., Laidler, K., and Eyring, H., The Theory of Rate

Processes, McGraw-Hill Book Company, New York, 1941.

. Lindemann, F. A., Tvans. Favaday Soc., 17, 599 (1922).
. Hinshelwood, C. N., The Kinetics of Chemical Change in Gaseous

Systems, Clarendon Press, Oxford, 1933.

. Fowler, R., and Guggenheim, E. A., Statistical Thermodynamics,

Cambridge University Press, 1952.

Keck, J. C., J. Chem. Phys., 29, 410 (1958).

Hart, R. W, Gray, E. P, and Guier, W. H., Phys. Rev., 101, 84 (1958).
Light, J. C., J. Chem. Phys., 40, 3221 (1964).

Pechukas, P., and Light, J. C., J. Chem. Phys., 42, 3281 (1965).

See e.g. Blatt, J. M., and Weisskopf, V. F., Theoretical Nuclear Physics,
John Wiley and Sons, Inc., New York, 1952.

Eu, B. C, and Ross, J., J. Chem. Phys., 44, 2467 (1966).

Fermi, E., Progr. Theovet. Phys. (Kyoto), 5, 570 (1950).

Horie, T., and Kasuga, T., J. Chem. Phys., 40, 1683 (1964).

Goldstein, H., Classical Mechanics, Addison-Wesley, Reading, Mass.,
1950, p. 305.

Rice, O. K., Monatsh. Chem., 90, 330 (1959); see also J. Phys. Chem.,
67, 6 (1963).

Makin, B., and Keck, J. C., Phys. Rev. Letters, 11, 281 (1963).
Bates, D. R., Kingston, A. E., and McWhirter, R. W., Proc. Roy. Soc.,
(London), A, 267, 297 (1962).

Hinnov, E. 1., and Hirshberg, J. G., Phys. Rev., 125, 795 (1962).
Woznick, B., 7 Chem. Phys., 42, 1151 (1965).

Keck, J. C., Discussions Faraday Soc., 33, 173 (1962). -
Keck, J., and Carrier, G., J. Chem. Phys., 43, 2284 (1965).

Woznick, B., RR223, AVCO-Everett Research Lab., Everett/Mass.,
1965.




