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A simple expansion procedure is used in conjunction with the detailed balancing condition to show that 
the linear master equation describing the relaxation of an atomic system in a background of inert atoms 
can be approximated by an equivalent diffusion equation with appropriate boundary conditions. This 
equation has the form of the ordinary heat-conduction equation for a medium of variable heat capacity and 
thermal conductivity and is simplier than the commonly used Fokker-Planck equation. It is expected to be a 
reasonable approximation under conditions where the changes in the constants of the motion are small in a 
single collision. A similar equation has been derived by Van Kampen who showed that it implies the phenom­
enological equations of nonequilibrium thermodynamics. However, he did not consider the boundary condi­
ditions necessary to deal with chemical reactions or phase changes. 

I. INTRODUCTION 

I N a previous paper! Keck and Carrier showed that 
the one-dimensional integrodifferential master equa­

tion describing the vibrational relaxation and dissoci­
ation of a molecule in a background of inert atoms 
could be approximated by an equivalent one-dimen­
sional diffusion equation with appropriate boundary 
conditions. In the present paper a similar approach is 
employed to obtain the corresponding generalized diffu­
sion equation and its boundary conditions. This equa­
tion has the form of the ordinary heat-conduction 
equation for a medium of variable heat capacity and 
thermal conductivity and is simplier than the Fokker­
Planck equation sometimes used to describe chemical 
reactions.2 

The reduction of the Fokker-Planck equation to the 
diffusion equation is based on the symmetry of the 
transition kernel implied by the detailed balancing 
condition and has previously been accomplished by 
Van Kampen3 using a somewhat more complicated 
technique. Van Kampen also showed that the diffusion 
equation could be used to derive the phenomenological 
equations of nonequilibrium thermodynamics and the 
Onsager reciprocal relations, but he did not consider 
the boundary condition necessary to describe chemical 
reactions or phase changes. The consistent use of the 
detailed balancing condition to obtain such boundary 
conditions is the principle new feature of the present 
work. 

II. GENERALIZED DIFFUSION EQUATION 

We consider an ensemble of atomic or molecular 
systems interacting with a background of inert atoms 
at constant temperature and density. The evolution 
of such an ensemble as it approaches thermodynamic 

1 J. Keck and G. Carrier, J. Chern. Phys. 43, 2284 (1965). 
2 See, e.g., H. A. Kramers, Physica 7, 284 (1940); H. C. Brink­

man ibid. 22, 29, 149 (1956); T. A. Bak and J. 1. Lebowitz, Phys. 
Rev. 131, 1138 (1963). 

3 N. G. Van Kampen, Physica 23, 707, 816 (1957). 

equilibrium can be described by a master equation of 
the form 

aN(x, t) f 
at = [K(x, x')N(x', t) -K(x', x)N(x, t)]dx', 

( 1) 

where x is a vector whose components are the constants 
of motion describing the state of a system between 
collisions with a background atom, t is the time, 
N (x, t) dx is the number of systems in the volume ele­
ment dx at x, and K(x', x)N(x, t)dx'dx is the rate of 
collision-induced transitions from dx at x to dx' at x'. 

Following Keck and Carrier we first introduce the 
specific distribution 

X(x, t) =N(x, t)/N.(x), (2) 

which is defined as the ratio of the actual distribution 
to the equilibrium distribution N.(x). Substituting (2) 
into (1) we obtain 

X(x, t) f 
N.(x) -a-t - = R(x', x) [X(x', t) -X(x, t) ]dx', (3) 

where, by detailed balancing, 

R(x', x) =K(x', x)N.(x) =K(x, x')N.(x') =R(x, x'). 

(4) 

If we assume that the transition kernel R(x', x) is 
such that the changes in x in a single collision are small, 
then we can anticipate that, sufficiently close to equi­
librium, it should be a reasonable approximation to 
expand X(x', t) in (3) in a Taylor series about x. This 
leads to the partial differential equation 
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where ~ =x' -x is the change of x in a collision and 

(rp)R(X) == f R(x', x)rpdx'. (6) 

We now observe that the symmetry of R(x', x) with 
respect to interchange of x' and x requires 

R(x', x) == S(i, ~) = S(i, -~), (7) 

where i = t (x' +x) is the mean value of x for a collision. 
If we further assume that S(i, ~) is large only for 
small values of ~ and varies slowly with i, then we 
can expand about x, so that 

S(i, ~) = sex, ~) + (i-x) . V sex, ~) +. ... (8) 

Substituting (8) into (6) we obtain 

(9) 

This approximate relation between the first and second 
moments of the transition kernel R(x', x) permits us to 
reduce (S) to the equivalent diffusion equation 

Ne(aXjat) =tV· (~~)RVX +.... (10) 

Equation (10) has the form of the generalized heat­
conduction equation with variable conductivity and 
specific heat and is equivalent to the result obtained 
by Van Kampen. It may be noted that the analogy 
with heat flow can be quite helpful for obtaining a 
physical insight into the character of the non equilibrium 
distribution occurring during a reaction. 

The diffusion current obtained from (10) is 

( 11) 

which has the form of the phenomenological equation 
of nonequilibrium thermodynamics.3 Equation (11) is 
a direct result of the expansion procedure and the sym­
metry of the kernel R(x', x) which follows from detailed 
balancing. The Onsager reciprocal relations for this case 
are automatically satisfied by the symmetry of the 
conductivity tensor (~~). 

III. BOUNDARY EQUATIONS 

In developing the above diffusion equation, we have 
tacitly assumed that R(x', x) was continuous for all 
values of x and x'. In general, this will not be the case 
and R(x', x) will be continuous in finite domains 
bounded by reflecting or absorbing barriers or surfaces 
across which a phase change occurs. To obtain the 
boundary conditions at such surfaces, we equate the 
diffusion current toward the surface given by (11) to 
the current across the surface obtained from the integral 
equation (3). For an element of area oA at a point a 
on the surface, this leads to the condition 

-tn· (~4)R(a-)vX(a-, t)OA 

=( ( R(x',x)[X(x,t)-X(x',t)]dx'dx, (12) lov1ov, 

where n is the unit outward normal to oA, a- is a point 
just inside the surface at a, and the volume elements 
oV and oV' are determined by oA and the conditions 
n· (x-a) ~O and n· (x'-a) ~O which imply that a 
system has crossed the surface in the neighborhood of a. 
Substituting (7) into (12) and noting that the Jacobian 
of the transformation (x', x) to (i, ~) is unity, we find 

-tn· (~~)R(a-) VX(a-, t)OA 

= ( ( S(i, ~)[X(x, t) -X(x', t)]did~. (13) lov1ov, 
We now assume that the discontinuities in S(i, ~) 

are confined to the boundaries of the domain of inte­
gration in (13) and that in the interior S(i, ~) varies 
sufficiently slowly with i so that we can expand about 
a. Thus 

S(i, ~) = Sea, ~) + (i-a) . V S(a, ~) +. . .. (14) 

We further assume that sufficiently close to equilibrium 
we can expand the specific distributions about points 
a- and a+ just inside and outside the surface at a so that 

X(x', t) =X(a+, t) +(x'-a+)· VX(a+, t) +... (lSa) 

and 

X(x, t) =X(a-, t)+(x-a-) ·VX(a-, t)+···. (lSb) 

Substituting (14) and (lS) into (13) and integrating 
over i, we obtain, to terms of order V X, 

-tn· (~~)R(a-) VX(a-, t) 

~t(1 n·~ I)s(a) [X (a-, t) -X(a+, t)] 

+in· (~~)s(a)[VX(a-, t) -VX(a+, t)], (16) 

where 

(rp)s(a) = f Sea, ~)rpd~. (17) 

For a reflecting barrier at a, S(a, ~) =0 and the 
boundary condition (16) becomes simply 

n· (~~)R(a-, t)VX(a-, t) =0. (18) 

For an absorbing barrier across which R(x', a-) is 
continuous, X(a+, t) =VX(a+, t) =0 and (rp)R(a-)~ 
(rp)s(a) , so that (16) becomes 

-tn· (~~)R(a-) VX(a-, t) = (I n· ~ I)R(a-)X(a-, t). 

(19) 

This would be the appropriate boundary condition for 
diatomic molecules dissociating under conditions where 
the atom concentration ACt) =0. A more realistic 
boundary condition for this case, which is also ap­
plicable when A(t) ~O, can be obtained by assuming 
that (~4)R(a+) is essentially infinite due to the very 
fast relaxation rate of the translational degrees of 
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freedom of the atoms. This implies that VX(a+, t) =0 
and X(a+, t) = [A(t)/Ae]2, so that (16) becomes 

-!n· (~~)R(a-)VX(a-, t) 

= (I n· ~ 1 )R(a-) {X(a-, t) -[A(t) / Ae]2}. (20) 

In the one-dimensional case, (20) reduces to the 
boundary condition used by Keck and Carrier. 

IV. REMARKS 

It is difficult to give a rigorous mathematical justifi­
cation of the truncation procedures used in the deri­
vation of the diffusion equation (10) and its boundary 
condition (16) from the integrodifferential master equa­
tion (1). The validity of the approach depends both on 
the properties of the transition kernel R(x', x) and the 
character of the problem under investigation. In general, 
however, it is anticipated that the diffusion theory 
should be a reasonable approximation for describing 
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the approach to equilibrium of systems for which the 
changes in a single collision are small. In particular 
applications it should be possible to obtain some idea 
of the validity of the theory by estimating the magni­
tude of the terms which have been neglected and by 
comparison with experiments. For a more detailed dis­
cussion of the mathematical aspects of this problem, 
the reader is referred to Van Kampen.4 

An important advantage of the diffusion equation 
over the master equation is that the moments of the 
kernel R(x', x) are in general very much more ac­
cessible than the kernel itself. It is anticipated that, 
in certain simple cases, analytic expressions for the 
moments can be obtained. In more complicated cases, 
statistical or numerical methods can be employed. All 
these approaches are currently being investigated in 
connection with a variety of rate processes and will 
be reported later. 

4 N. C. Van Kampen, Fluctuation Phenomena in Solids (Aca­
demic Press Inc., New York, 1965), p. 139. 
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The ir emissions from CO and C02, formed in the C2H2-02 reaction in a shock tube, have been observed 
as a function of time. By calibrating these emissions in terms of concentrations and by comparing them 
with the emission of CH* (A 2~-->X 2'11"), produced in the same reaction, it has been possible to confirm that 
C02 is formed in the early stages by a reaction other than CO+OH-.C02+H. This reaction involves a 
primary carbon-containing radical and an 02 molecule, and its rate at 18000 K is 5% of the rate of formation 
of CO, produced by a similar reaction. 

The importance of the reaction CO + OH-->C02+H in the later stages of oxidation has been examined as a 
function of the initial OdC2H 2 ratio, and the growth of OH concentration during the reaction elucidated. 

More decisive proof is given that CH* is produced by a reaction which is second order in reaction in­
termediates. 

INTRODUCTION 

THE production of CO2 from the oxidation of 
acetylene has been ascribed generally to the re-

stants of exponential rise for CO and CO2 and were not 
completely convincing since the statistical scatter 
of the mass spectra was large and the actual values of 
the time constants were much greater than would be 
expected. action 

(1) 

This is known! to be a fast reaction and to occur in 
hydrocarbon oxidations. 

Glass et al.2 presented controversial evidence that 
this reaction could not account for the appearance of 
CO2 in the initial stages of the C2H 2-02 reaction. Their 
conclusions depended on a comparison of the time con-

1 A. A. Westenberg and R. M. Fristrom, Symp. Combust. 
10th, Cambridge Univ. 1964,473 (1965). . .. 

2 C. P. Class, C. B. Kistiakowsky, ]. V. Michael, and H. N!kl, 
J. Chern. Phys. 42,608 (1965). 

The known rate of Reaction (1), together with a 
determined rate of production of CO2 and the concen­
tration of CO, has previously been used3 to calculate 
the concentration of OH in acetylene flames. If CO2 
were produced to a significant extent by any other 
reaction, this method would be in error. Furthermore, 
proposals2

,4 as to the reaction mechanisms leading to 
the minor products CaH3+, CO*, and CH* depend on 

3 C. P. Fenimore and C. W. Jones, J. Chern. Phys. 39, 1514 
(1963) . 

4 J. B. Homer and C. B. Kistiakowsky, J. Chern. Phys. 45, 
1359 (1966). 
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