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An approximate analytic technique for splving the transport equations of thermionic energy converters 
is developed. Using an assumed parametric form for the ionization rate, the problem is reduced, 
essentially, to one of the solution of three simultaneous transcendental equations. A numerical 
iterative procedure for the solution of these equations is derived and implemented in a computer 
code and some illustrative solutions are obtained. A simple criterion for whether the converter is 
operating under equilibrium or non equilibrium 'conditions and other simple relations describing the 
character of the solutions are derived. For nonequilibrium conditions, the assumed form for the 
ionization rate is found to agree well with the actual form, and the solutions obtained are in good 
agreement with previous results. The empirically observed minimum in the arc drop at the optimum 
value of the pressure-spacing product is predicted. The present theory is the only one known to the 
authors which shows this result. The solutions may be systematically improved by numerical 
integration and iteration and the range of applicability of the solutions can be extended to local 
thermodynamic equilibrium conditions by assuming a more general form for the electron production and 
to a greater variation in parameters by incorporating a recently derived improved set of boundary 
conditions into the analysis. 

I. INTRODUCTION 

VariOUS forms of essentially the same transport equa
tions and various associated boundary conditions describ
ing the plasma of thermionic converters operating in the 
ignited mode have been derived in the past. A typical 
form for the transport equations is that of Wilkins and 
Gyftopoulos1 and boundary conditions Similar to those 
used in the present study are employed by McCandless 

general assumed form for the ionization rate. Such a 
form can be obtained by a superposition of two forms of 
the type assumed here. 

et al. 2 To solve these equations it is necessary to inte
grate the relation for the net ionization rate distril:1ution 
across the converter. . 

Previous analytical attempts at integrating the trans
port equations employ approximations which limit their 
applicability to values of the product of the pressure and 
interelectrode .spacing which are much greater than those 
of interest for power-producing converters. The nlJmer
ical "shooting" methods, typified by the work of 
McCandless et al. 2 and of Wilkins and McCandless, 3 on 
the other hand, are subject to numerical instabilities' 
which make them exceedingly expensive and difficult to 
implement; in addition they provide relatively little phy
sical insight into the phenomena involved. 

In this study, by assuming a parametric form for the 
ionization rate distribution acrosS the converter and ad
justing the parameters so as to fit the assumed form to 
the actual one, the transport equations are integrated 
analytically and thereby reduced to a set of three simul
taneous transcendental equations. These equations are 
solved numerically by means of an iterative method in 
a computer program. 

Comparison of the assumed and calculated forms of 
the ionization rate distribution show the form assumed 
here to be successful for small values of the pressure
spacing product which corresponds to nonequilibrium 
conditions. These are the conditions of interest for prac
tical converters. Solutions applicable to research con
verters', which have larger pressure-spacing produCts, 
can be obtained, using our method, by means of a more 
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The formulation of the problem in terms of a set of 
equations to be solved is presented in Sec. n. In Sec. m 
the transport equations are integrated, and in Sec. IV 
the numerical methods of solution of the integrated equa
tions are described. In Sec. V some solutions are pre
sented and discussed and conclusions are drawn. 

II. MATHEMATICAL FORMULATION 

A. Physical model 

As is indicated in Fig. lea), the interelectrode space 
of the converter is considered in terms of three regions 
consisting of a plasma region bounded by two sheaths of 
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FIG. 1. (a) Schematic diagram of a thermionic diode. (b) Mo
tive diagram assumed in this study. 
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negligible width. The plasma is one dimensional, of low 
energy, and consists of ions, electrons, and neutral 
atoms. The electron potential energy is due entirely to 
the electric field and varies in the general manner given 
by the motive diagram in Fig. l(b). Here, the emitter 
sheath, of height VE' is accelerating; the collector 
sheath, of height V c, is retarding; and no assumption is 
made regarding the form of the electrical potential in the 
plasma. The terms "accelerating" and "retarding" refer 
to sheaths that accelerate or retard electrons as they 
move toward the collector. The emitter and collector 
work functions are given by <t> E and <t> c, respectively; the 
arc drop is denoted by V D and the output voltage by V. 
Position x varies from zero at the emitter, where the 
electron potential lj; is set equal to zero, to d at the col
lector, where the electron potential is lj;d' 

For low degrees of ionization, 

(1) 

where n" is the concentration of species o!. The sub
scripts e, i, and n, indicate electrons, ions, and neu
tral atoms, respectively. 

Assuming collisional coupling between heavy particle 
species, we have 

(2) 

where 0" = kT", is the temperature of species O! in energy 
units. 

B. Governing equations 

For the assumed type of plasma, the equation of state 
is 

(3) 

where P is the total pressure, and the transport equa
tions, which are derived using those of Wilkins and 
GyftopouloS,l are 

~=drl =s 
dx dx ' 

(4) 

re dPe dlj; 
-=---n -
Ile dx e dx' 

(5) 

r I = _ dPI + n dlj; 
III dx edx' 

(6) 

Qe =r e(toe + lj;) -2nelleO/1;, (7) 

Qn= -2nnllnOn ~:, (8) 

where S is the ionization rate density, and, for species 
O!, r", is the particle flux, Il '" is the mobility, Q '" is the 
energy flux, and P",=naOa is the pressure. 

The mobilities are given by 

1l~1 = m.ce(O'ennn + O'elne>' 

Il? = 12 m;cnO'lnnn' 

1l~1 = 12 mnenunnnn' 

(9) 

(10) 

(11) 

where mOl is the mass of species O!, uaB is the collision 
cross section for species O! and (3, and 

C", = (80 oi 7rm ,.)1/2 (12) 
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is the mean thermal speed of species o!. Note that, in 
using these equations, we assume that (i) charged par
ticles are created in electronion pairs, (ii) thermal dif
fusion and the transfer of directed momentum from elec
trons to ions may be neglected, and (iii) the energy flux 
carried by ions is negligible with respect to that carried 
by neutrals. 

Making the additional assumption that radiation losses 
and energy transfer from electrons to heavy particles 
are small gives us 

dQn =0 
dx ' 

(13) 

dQe= _ V S 
dx I , (14) 

where V I is the ionization potential. 

For collisonal ionization and three-body recombina
tion, the net ionization rate is given by4 

S = f:lrne(n~ - n;), 

where we have employed the principle of detailed 
balanCing, 

f:l
r 

( cm6 /sec) ~ 4 x 10-27 [ 0e (eV)]-9/2 

is the three -body recombination rate constant, and 

(15) 

(16) 

ns=n~/2(meO/21T1i2)3/4exp(- V/20e) (17) 

is the Saha electron concentration. To derive Eq. (16), 
we utilize the temperature dependence determined by 
Mansbach and Keck5 and choose a value of the coefficient 
which gives the best possible agreement with experi
ments6

-
11 after the empirical values are corrected for 

radiative cascading. In the vicinity of a reference tem
perature 0*, a good approximation for ns is 

ns=n*exp(-V*/Be), (18) 

where 

n* =n~/2(2. 72meO*/27r1r)3/4, 

V*=!VI+ tO*. 

C. Boundary conditions 

(19) 

(20) 

The emitter boundary conditions that were used are 

reO= r E -Reoexp(- VE/OeO)' 

r lo = -2R jo , 

Qeo=rE(20E + VE) -erE -reO)(20eo+ VB)' 

and the collector 'boundary conditions used are 

red=Red exp(- V C/Oed)' 

rid=2Rw 

Qed = r ed(20ed + V c + lj;d)' 

where r E is the emitter saturation current, 

Ra=in",c, 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

is the random current for species O!, and the subscripts 
o and d indicate evaluation at the emitter or collector 
end of the plasma, respectively. These boundary condi
tions are a variation of those used by McCandless et 
al. 2 At the time this work was undertaken, no rigor-
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ously derived set of boundary conditions was available. 
However, Keck12 has recently developed a set of bound
ary conditions using the Krook approximation to the 
Boltzmann equation. These boundary conditions have not, 
as yet, been used in an analysis of a converter. We can, 
however, easily determine under what circumstances the 
boundary conditions used here are equivalent to the cor
rect ones. We find that if (A 1j2Be)dl/J/dx is not greater 
than of order unity, where Aln is the ion-neutral mean 
free path, and if Re and (d/T.)dTe/ dx at both electrodes 
are not much greater than unity, then the two sets of 
boundary conditions are equivalent when 

1<:VE /B eo <:5, (2S) 

1 <: V c/Bea< 5. (29) 

III. METHOD OF SOLUTION 

A. Temperature distribution of neutrals 

To obtain the temperature distribution of the neutral 
atoms, we substitute (11) and (12) into (S) and integrate 
for constant CTnn• Then for temperatures of neutrals at 
the plasma boundaries equal to the corresponding elec
trode temperatures, we obtain 

Bn=BE[1-1j(1-EcE)3/2]2/3, (30) 

where 

f/=x/d (31) 

is a dimensionless distance and 

ECE = Bc/BE (32) 

is the ratio of the colle,ctor temperature B c to the emit
ter temperature BE' 

B. Electron density distribution 

In order to make the integration of the ionization rate 
S tractable, we assume that S, given by (15), can be 
approximated by the function 

S* At nh(f/+ a) 2 (T/+a) = a -b- sec '-b- , (33) 

where A, a, and b are parameters which are to be ad
justed so as to give the best fit of Sand S*. This func
tion gives a good approximation to the variation of the 
electron production with position which has been obtain
ed in previous studies. 13-15 Justification of the assumed 
form for any particular case, however, can be obtained 
only after S has been calculated and compared with S*. 
As will be seen, this form is applicable to converters 
with small values of pd in which nonequilibrium condi
tions exist, 

Substituting S* for S in Eq. (4), integrating, and apply
ing the condition r I = r Ilf at the collector, we obtain 

rl=re-Jle 

where J is the net negative charge flux, e is the unit 
charge, 

(34) 

(35) 

is a nondimensional measure of position, and lilf =(l +a)/ 
b is the value of li at the collector. 
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Adding (5) and (6), and using (9), (10), (12), (25), (27), 
and (31), and assuming re~ red gives us 

dP + ~P=-d (f +~_) 
d1j Rea In~ I Red ' 

where 

P=ne(Be + BI)/nea(Bea + Bc), 

rl=r/rw 

del = neaCTel d[2( B eB ea)1/2 / 1T( B elf + e I) J, 
din = nnCTln d[ 4(2B IB c)1/2/1T(Belf + Bc)], 

Eel = (CTe/ CTln)[BeBeiSB IB C]1/2, 

Re=R/re' 

(36) 

(37) 

(3S) 

(39) 

(40) 

(41) 

(42) 

Since the ions carry only a small fraction of the total 
particle flux, which is constant, -across the converter, 
the approximation r e ~ r elf is a good one. 

The terms in brackets in (39)-(41) are all of order 
unity. Therefore del and din are essentially the converter 
spacing measured in electron-ion and ion-neutral mean 
free paths, respectively, and Eel is essentially the ratio 
of the ion-neutral to the electron-neutral mean free path. 
Since the temperature dependence of the cross sections 
is weak and the concentration of neutrals is nearly con
stant, we may treat del' din' and Eel as constants (to be 
evaluated at the maximum point of S*). 

At this point we investigate the relative orders of mag
nitude of the terms delP/Rea and dlnEe/Red in (36). The 
first of these quantities divided by the second is CTeln/ 
CT.nnn• Using the cross sections given in Table I,16 we 
find that this ratio reduces to 25n/nn, which, for most 
converters of interest is much less than unity. There
fore, the term delP may be neglected in (36). 

Integration of (36) with the condition P = 1 at 1j = 1 then 
gives us 

P= 1 + ii{[l + B sech2lid][(1 -1)/(1 + a)] 

Where 

J = (1 + a)(l + Ee/ii.d)dln , 

B=Abd/2rli 1 + Ee/Relf)· 

(43) 

(44) 

(45) 

We expect that a« 1. From the assumption that the 
temperatures are all of the same order of magnitude and 
t.!lat Red is not s~all compared to unity, we find that E./ 
Rea« 1. Thus, d is essentially the same as din' To ob
tain an expression for the electron production in terms 
of P, we substitute (37) into (15) and use (25) and (27). 
This gives us 

S = (2r Ii d)drP(~ - P), (46) 

TABLE I. Values of collision cross sections (from Ref. 16). 

O'jn "'" 1200 ).2 

IT., "'" 400,)'2 
0'"" "'" 100 ).2 
lTei ~ 10' ).2 
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FIG. 2. Assumed form of ionization rate S*, given by (33). 
Points where S* is matched with S are indicated by x. 

where 

1'. =ns(Oe + 01)/neiOed + 0c), 

d = (drn!dd) (lied + ° c) 3 
r C

1d 
0e + 0i • 

(47) 

(48) 

Note that [(Oed + 0c)/(Oe +0;»)3-1, and from (15) the mean 
time for recombination is (J3rn~>-1. Therefore dr is essen
tially the converter spacing divided by the mean free 
path for ion recombination at the collector. 

We now determine values of the parameters B, a, and 
b which will give the best fit of S* to S. Figure 2 shows 
the form of the function S* given by (33). Note that, in 
this figure, 00 = alb is the value of ° at the emitter, and 
Thand °1 are the values of 1/ and 0, respectively, at the 
point of maximum electron production. We anticipate 
that by matching at the point of maximum electron pro
duction, where 1/ = 1/10 and at the extrapola:ted end point, 
where 1/ = - a, a good over-all fit of Sand S* will be 
obtained. 

First we match Sand S* at the extrapolated end point. 
Using (33), (37), (46), and the condition (S)~.-a = (S*)TJ<-a 
=0, we have 

1 + d[l + B sech20d - (B/Od)tanMd]= O. (49) 

Matching at the position of maximum electron production 
we use (dS/ d1/)1 = (dS* / d1/)1 = 0 to obtain 

( jJ2 _ 3f'2) dP + 21'1' dPs) = 0 (50) 
s d1j 'd1/1 , 

(51) 

where the subscript 1 denotes evaluation at 1/ = 1/1. It 
should be noted that, in the differentiation of S, the vari
ation of dr is considered to be negligible. Finally, (45) 
and the condition S1 = St yield 

(52) 

Equations (49)-(52) are sufficient to determine B, a, 
and b. We now derive some additional relationships 
which will be required. 

Evaluating (34) at the emitter, using the boundary con
ditions (22) and (25) as well as the equations (12), (27), 
(32), (37), and (38), we get 
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rlO = - 1'O[(Oed+ 0c)/(OeO + 0E)](E cE)1/2 

= 1 + B(l + Ee/Red)(tanh20o -tanh20d). 

From (12), (25), and (27) we obtain 

reO=reolred=l-E,,!i.ed(l-r;o), 

where, for T c "'620 oK and Ted'" 2600 oK, 

( rld)/- (meOc)1/2 1 
Em = r Red = 2 -;:;;:e- '" 500· 

ect n ed 

Combining (12), (22), (25), (27), (32), (38), and (42) 
gives us 

From (43) and (49) we have 

B=(d+1)Odcoth O/d(l-C), 

1'= (d/Od)(B tanM -DO), 

where 

C=20/sinh20d, 

D= 1 +B sech20d 

= (d+C)/d(l-C). 

Combining (44), (51), (52), and (57)-(60), we obtain 

(P) 2 2E2 
; 1 = 1 + Er(]Z(lI + 1)2 , 

where 

E= (l-C)Od (1-1.14 D)-3/2 
cotMd ,. B 

and 

Er=dr/d1n (1 + Ee/Red)2 

-2- (m/m.)l/2(~)(ned(010e4)1/2\ 
- 4/2" (1 + Ee/RedF alnCed p / 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

Since Ee/Red« 1, fr is essentially the ratio of the ion
neutral mean free path to the mean free path for ion re
'combination at the point of maximum electron 
production. 

Substituting (61) into (50) gives us 

6.X :; _ (dln1's) 
1 d1j 1 

_ (E2 -Erd 2(d + 1)2) 
- E;2 + ~r1I2(d + 1)2 F, 

where 

F=t(dlnP.\ 
d1j j 1 

_ 0d - 3(d + C)/2(d + l)cotMa 
- J3(1+a)(1-1.14D!B)· 

(64) 

(65) 

We observe that, when Er d2(d + 1)2« E2, (64) reduces 
to 6.X1 =F. When this is the case, 6.X1 becomes indepen
dent of J, since the dependence of tl.X1 on J is contained 
entirely in fro We expect that a« 1 so that F is a func
tion of d and 0d only. From (49), (57), and (59), we see 
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that lid is a function of d only. Thus F can be expressed 
as a function of d onlv. It can be shown that many of the 
variables will, for this special case, either be indepen
dent of J or will depend on it in some simple mannero It 
can readily be proven that E cannot take on a value 
smaller than approximately 5.4. Therefore C'% will be 
independent of J when Ey d2(d + 1)2« (5.4)2. 

We expect that, for most conditions of interest, 
(lio cothlio - 1) « (lid cothli d - 1) so that, by substituting 
(57) and (60) into (58) and evaluating Pat 1j=0, we obtain 

Po= (d/lid)(B -D)tanhlio• (66) 

Combining (66) and (37) and substituting into (53) gives 
us 

(67) 

Solving this equation for tanhlio an:! neglecting the nega
tive root, we have 

G {f, 4BH( E )1/~} 
tanhlio= 2B(1 + Ee/Red} L1 + cr 1 + ie'd r 1 , 

where 

C. Electron potential energy 

(68) 

(69) 

(70) 

By combining (5) and the relation P, = Pi;l ° e to elimi
nate dp/ dx from (6), and then using (3), (9), (10), (12), 
(25), (27), (31), (35), (37), (38), (40), (41), and the ap
proximations jJ.,« jJ.e and r e = r ed' we obtain 

dI/J din (- .li. ~ d ( 0,) de' -d =-=-r,Oe-- OJ +0";r ln1 +7J --==--OJ' 
1j P Red 1j e Red 

(71) 

Substituting (44), (45), and (70) into (34) gives us 

f, = -H +B(l + Ee/Red)tanh2li o (72) 

Substituting (58) and (72) into (71) and integrating, we 
get 

I/J = I/Jl + 1/J2 + 1/J3 + 1/J4' 

where 

I/J = r~ ° [~ln(l + ~)]d1j' 
1 10 e dTj' ° e ' 

£6 [OJ -(EgI/Red)O,1tanh2li' 
1/J2 = 60 (1 + Ee/ Red}(B tanhli' - Dli') dli', 

I/J - _ r [OeH + (Ee,/Red)° ,]sech2li' dli' 
3- 160 (1 + Ee/.Red)(B tanhli' -Dli') , 

1/J4 = - (de/Red) fo~ OJ dTj', 

where 

I =B(l + Ee/Red)sech2 lid + 1. 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

To determine I/Ju we note that 0e varies slowly across 
the converter and obtain 

(79) 

In evaluating 1/J2> we note that the integrand increases 
rapidly with li so that the value of the integral is deter-
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mined mainly by the contribution from the vicinity of the 
upper limit. Therefore, 

I/J = [Oel - (Ee,/Red)O,]tanh2lioj5 1 dli' 
2 1 + Ee/Red 50 Btanhli -Dli' 

= [Oi - (Ee/Red)Otltanh2 li In (tanhli - (D/B)lio). (80) 
[1 + Ee/Red]D tanhli -(D/B}li 

Similarly, Since, in the case of 1/J3' the integrand de
creases rapidly with increasing li, it is a good approxi
mation to set tanhli=li and Ofi+Ee/RedOj = °erP+Ee/ 
RedOE for the integration. This gives us 

1/J3= - °erP + (Ee/Red)OE In ~ (81) 
(1 + Ee/ Red)(B - D) tanhlio ' 

Substituting (30) into (77), we easily obtain 

(82) 

We note that (80) and (81) become increaSingly better ap
proximations as li/lio increases. In particular, a fairly 
good value for the electron potential at the collector will 
be obtained. 

Now we find from (21), (24), (42), and Fig. 1 that the 
sheath heights and the arc drop are given by 

VC=OedlnRed' (83) 

V E = ° eO In ( r EI ::: _ 1) , (84) 

and 

VD=VE-VC-I/Jd' (85) 

Another relation for the arc drop can be obtained by 
integrating (4) and (14), combining the results with (23) 
and (26), and using (85). This gives us 

V D = 2(r E/r ed)(8eo - 0E) - 2(Oeo - Oed) 

+E".Rei1 - f ,0)(V, + 20eO + VE). (86) 

If, instead of a monotonically varying sheath at the 
emitter, there exists a double-valued sheath, a correc
tion must be made to the relationship for the arc drop. 
In Fig.3 we see the form taken by the motive diagram: 
when there is a double sheath at the emitter. The sub
script M indicates evaluation at conditions corresponding 
to the largest value of the saturation current JE at which 
there is a double sheath. Thus, 

Electron 
Potential 
Energy 
(Negative) 

,,-.... ,...... ---------

>ltd Vc 

---r 

(87) 

VD 

<Pc I 
I 
I 
I Collector 
I Fermi Level 

Emitter I I L-.-t-....:....:~.....:::"-= 
.:....Fe:.;.r.:.;;m.:....i ;::;cLe:..;v..:.;el_--,-....J-L..- ________ I __ ,---V_ 

x=O x=d 

FIG. 3. Motive diagram when there is a double sheath at the 
emitter. 
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Assuming a Boltzmann distribution at the emitter sheath 
at the temperature of the emitter, we have for constant 
J, 

(88) 

where JEM is the minimum value of JE at which a double 
sheath exists. To determine JEM , a theory of the Debye 
sheaths in a thermionic converter is required. To our 
knowledge, no adequate theory exists and JEM is unknown 
at present. 

D. Electron temperature 

Using (3), (9), (10), (12), (25), (27), (31), (37), (39), 
(40), (41) and the approximation r e" red' we write (7) in 
the form 

dBe . (Qe ~ 
d1) -tpBe=- ~p re -If!J' (89) 

where 

(90) 

Integration of (89) yields 

B,exp( - tK)- B,,: -} l' exp(- tK>(~: - ,Pdij', 
(91) 

where 

(92) 

Since, from (14) and (73), Qe=Qeo-Vj(rj-rjo)d, and 
since we have relations for If!, (91) can be integrated 
numerically to give us a relation of the form 
j{Beo, Bed' 0d,Red}=O. In practice, however, this makes 
the solution difficult. We therefore, as a first approxi
mation, instead assume that (Q/re -If!) may be consider
ed to be constant. Integration of (91) then gives us 

Be=Bed+(BeO - Bed){1-exp[- t(Kd-K)]}[l-exp(- tK)d]-l. 

(93) 

From (26), (83), (89), and (93), we obtain 

8eO = Beo/Bed=1-t(1-21nRed)[1-exp(- tKd)]. (94) 

The variation of p is due primarily to the variation of P. 
We therefore obtain from (92), 

K = In r,(~) "'1 (B tanhO - DOo) "'21 
L tanMo Btanho -Do J 

(95) 

where 

(96) 

(97) 

(98) 
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IV. NUMERICAL METHODS 

A. Equations to be solved 

To obtain a numerical solution, we formulate the prob
lem as one of solving a system of three simultaneous 
t,!'anscendental equations for the unknowns Bell ad' and 
Red' Two of the equations are of the functional forms 

f1{Bell 0d,ReJ=O, (99) 

eel =f2{eell 0d,Red}, (100) 

and for the third, we have a choice of either 

0d = f3{ Bell ad' Red} (101) 

or 

(102) 

In the routine employed, three separate equations are 
used which, together, are equivalent to (102). 

B. Methods of solution 

To provide a motivation for the methods used and to 
obtain an understanding of the nature of the solutions 
which will b.e obtained, we first rewrite and then sketch 
(64). Equation (64) can be written in the form 

- (F -AX )1/2 
Redcf> = E ,-F + ~A;l ' (103) 

where 

cf> =€~/2d(d + l)/Red• (104) 

In Fig. 4 we have a contour plot of (103). From inspec
tion of this figure we conclude that under nonequilibrium 
conditions (Redcf>« 5.4) theEe is only one solution to be 
found for a given value of Redcf>. This is due to the fact 
that in a nonequilibrium Situation, the electron produc
tion S has only one extremum to which the maximum in 
the assumed form, S*, can be matched so that (50), and 
therefore also (64), has only one solution, When the 
plasma is in local thermodynamic equilibrium (Red» 

lOr--------rr--,---.---------,----------~ 

8 

Red¢ 

G 

z5.4 

4 

2 

i 
I 

-------I~-----

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I Nonequilibrium 
I 

°O~------O~.6~6~-+--Z~1.3~------~2~----------~3 

FIG. 4. Contour plot of Eq. (103). 
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(0).--------------------, 
Nonequilibrium 

o 

(b) 

(Thin Converter) 

x d 

Local Thermodynamic' 
Equilibrium 

(Thick COnverter 

• 

FIG. 5. (a) Conditions existing in a nonequilibrium situation 
(corresponding to bottom of Fig. 4 where if ed¢> <' 5. 4). (b) Con
ditions existing when equilibrium is approached along most of 
the interelectrode gap (corresponding to Red¢> »5.4). 

5.4), however, S contains two maxima and therefore 
three extrema to which the maximum in S* may be 
matched. Thus, a form of S* which contains two maxima 
would be required to obtain accurate equilibrium 
solutions. 

That these results are in agreement with what we 
would expect physically becomes clear from Fig. 5. In 
the nonequilibrium situation, the converter is not suffi
ciently thick for the electrons to achieve an equilibrium 
concentration before they reach the collector; S, then, 
achieves a maximum near the emitter and decreases in 
magnitude as ne approaches ns' In the thick converter 
case, on the other hand, ne becomes as large as ns at 
some point in the converter, overshoots slightly, and 
becomes smaller than ns in the vicinity of the collector. 
Maxima in S will then exist in the two regions where ne 
is smaller than ns' 

Since, from (35), (51), and the assumption that 
00« 01> 

'Ih = (01 - 00)/(Od - °0)" O. 66/ 0d' (105) 

the maximum in the electron production will be near the 
emitter ('Ih < i) for 0d> 1. S. and nea:r: the collector ('/)1> i) 
for 0d < 1.3. Since the variation of Ps is due primarily 
to that of ns' we have, from (18), (47), and (64), 

- V* d()e \ 
~Xl=-()2 -d • 

. el TJ 1 

Therefore, for monotonically varying electron tempera
ture across the converter, the Sign of (8eo -1), given by 
(94), must be the same as that of ~Xl' For many cases 
of interest [see (95)-(97)] exp(-iKd)« 1. It can easily 
be seen from (94) that when this is so 

(geo -l)/(Red -1. 65) > O. (106) 
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To obtain an approximate relation for ct>, we use the re
ferencevalues Te=2800oK, V*=8Te, TE=1800oK, Te 
=::620 oK with Til = (TE T e)1/2, and the assumptions Eel 
Red« 1 and a« 1. Then using (12), (16), (44), and Table 
I, (104) reduces to 

ct> .. 2 5 X 10-4 J (A/ cm2)dln(dln + 1) 
• [p (Torr)P /2 • 

(107) 

Figure 4, in conjunction with (106) and (107), can be 
used to predict where solutions will be found. 

To obtain solutions, we specify the values of p, d, T E' 

T e, J, JE , me' m n, (TIn' (Ten' (Tnn' and VI' Then what is 
essentially a scan along 0d and/or a scan along Red is _ 
performed. In Fig. 4 we see that for small values of Red' 
corresponding to nonequilibrium conditions, the branches 
on which solutions are to be sought are nearly vertical. 
The value of ct> will not vary very much. We therefore 
expect SCans along Red to be most likely to yield solu
tions. By similar reasoning, it is anticipated that scans 
along 0d will be most profitable in searches for solutions 
on the near-horizontal sections. Note that, as 0d be
comes large, Redct> asymptotically approaches 0d' 

In the scans along 0d' it is required that (99), (100), 
and (102) be satisfied, and, in scans along Red' (101) 
must be satisfied instead of (102). In order to start the 
scans, guesses must be made as to the values of some of 
the variables. At a value of the scan parameters for 
which (99) is satisfied, these variables are evaluated and 
the values obtained are used to start another scan. This 
procedure is repeated until convergence is achieved. 

V. RESULTS AND DISCUSSION 

A. Some illustrative solutions (Ref. 17) 

Solutions were obtained for a cesium-filled converter 
at an emitter temperature TJI of 1800 oK, a collector tem-

20r-----,------r-----.-----.-----. 
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2 

.5 

.4 

.3 

.2 

.1.4 

pd = OAmm-torr 

.5 .9 

FIG. 6. Red' Retlf>!J, and c5d vs the net current J divided by the 
emitter saturation current JE • 
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FIG. 7. Approximate values of mean free paths and Debye 
lengths vs J/JE • Debye lengths were evaluated using the rela
tion h= (9E/47Te2ne). 

perature T e of 620 o K, a pressure p of 2 Torr, and a 
range of values of current ratio J/JE , current J, and the 
pressure-spacing product pd [determined by a chosen 
value of d, defined by (44)]. The values of d investigated 
range between 20 and 100. The smallest value of the cur
rent ratio for which solutions were sought is 0.4; the 
upper limit of J/JE was determined by a variety of nu
merical convergence problems. Values of Jbetween 1 
and 20 A/cm2 were investigated. 

Figure 5 indicates the cases for which (Reil»2« (504)20 
Using this information, as discussed in Sec. fiB, we 
can determine when many of the variables will either 
scale with or be entirely independent of J. In this figure 
and in all succeeding figures, the absence of an indica
tion of the value of J for a curve implies independence of 
J for all applicable values of J. 

A conservative estimate of the regions of applicability 
for all curves given here for which pd = O. 4 mm Torr, in 
all figures in which a value of J is not indicated, is given 
in Fig. 6, according to which these curves are applica
bleto 1""J,."20A/cm2 forO.4,.,,J/JE ,.,,0.65, to 1,."J,.,,10 
A/cm2 for 0.4 ,."J/JE ,." O. 7, and to J=l A/cm2 for 004"" 
J/JE "" O. 883. We note that Fig. 6, in conjunction with 
(105) and Fig. 4 may be used to determine the form of S 
and the manner in which S* is matched to S. Figure 6 
also shows that Red> 1, as required in order for the 
transport equations used to be valid for this analysis. 

4813 J. Appl. Phys., Vol. 45, No. 11, November 1974 

Figure 7 shows that \n < Aen« Aei • Thus, most of the 
reSistance to ambipolar diffusion is due to the neutrals 
and the value of Ain is of primary importance in deter
mining converter performance. Since, for small J/JE , 

Aen is less than an order of magnitude larger than Ain, the 
value of Aen may also be of some importance. The fact 
that the mean recombination length Ar is much greater 
tha .. n any of the mean free paths indicates a nonequili
brium condition. The Debye lengths at the electrodes are 
seen to be. much smaller than the interelectrode distance 
which is in agreement with our initial assumptions. 

As predicted by the considerations of Sec. IV B, S* is 
found to approximate S quite well for nonequilibrium 
cases [(Rell>)2« (5.4)2]. In Figs. 8 and 9 we see distri
butions for two typical noneqllilibrium cases. The values 
of the quantity [!od(S* -S)dx]/(jodS*dx) in Figs. 8(a) and 
9(a), which are used as a measure of how well S* is fit
ted to S indicate good fits for both figures. For Fig. 8, 
(Rell»2« (504)2 for the entire range of J investigated. 
Thus, with the exception of Fig. 8(e), the curves in Fig. 
8 are independent of J. By the same criterion, the inde
pendence of and scaling with J shown in Fig. 8, although 
not exploited in Fig. 9, apply to that figure for small 
values of J . 

Figures 7, 8(g), 9(g), and 10 show that, except at 
small currents where V E < 0 (the boundary conditions 
used assume an accelerating emitter sheath), the condi
tions required for (28) and (29) to apply are met. We 
therefore deduce from Fig. 10(b) that for pd = O. 4 
mm Torr, the boundary conditions used in this study are 
equivalent to the improved ones for J / JE greater than 
about 0.65. It is difficult to estimate to what extent the 
solutions presented here for smaller J/ JE depart from 
those that would have been obtained had the improved 
boundary conditions been used. However, comparison of 
Figs. 8 and 9 shows that moderate variations in J / J E in 
the vicinity of J / J E = O. 65 produce only moderate differ
ences in the solutions. It is therefore felt that solutions 
for J/JE not much smaller than 0.65 are acceptable. 

Wilkins and McCandless3 and Wilkins and co-workers2, 
by means of a numerical "shooting" technique, have 
solved a set of transport equations which is essentially 
the same as ours using boundary conditions which, when 
the random current is greater than the directed current, 
are nearly the same as those of this study. The value for 
the ion-neutral cross section (J used in Refs. 2 and 3, 
570 A.2, is considerably smaller than ours. 

One of the cases considered by Wilkins and 
McCandless3 is suitable for comparison with the results 
presented here, although the conditions are somewhat 
different from ours. Their conditions are T E = 1820~, 
Te=882°K, p=4 Torr, pd=0.6 mmTorr, and O,,;;J,,;; 
15 A/cm2• Due to the uncertainties involved in the use of 
the Richardson equation, the value of JE is inferred from 
the results for the above case. It is found that the re
suits of Wilkins and McCandless are in close agreement 
with ours if J/JE for their work is taken to be 18 A/cm2. 

We observe many of the same trends in Fig. B -22 of 
Ref. 3 as in Fig. 10(b) of the present work. Their val
ues of VE' Ve , and l/Jd are all approximately the same as 
ours, but the values that they have obtained for these 
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FIG. 10. (a) Electron temperature evaluated at the emitter, 
the collector, and the point of maximum electron production 
vs J/JE • (b) Electrostatic sheath heights and electron potential 
distribution versus J/JE• 

variables show somewhat smaller slopes than ours when 
plotted against J/JE as in Fig. 10(b). 

It should be noted when considering the solutions pre
sented in Refs. 2 and 3 that those solutions which exhi
bit a change in Sign of the derivatives of the electrical 
potential between either of the sheaths and the adjacent 
edge of the plasma imply the existence of a double
valued sheath and are therefore unacceptable. 

Comparison of Figs. 10(a), 8(d), and 9(d) with Fig. 
B -34 of Ref 0 3 reveals a significant discrepancy in the 
results for the electron temperature. This difference 
can be traced to the relations used for the electron en
ergy flux in the two studies. -In their relation for Qe' 
Wilkins and McCandless have (t +ye)6e in place of ~6e in 
the convection term, where Ye is the thermoelectric co
efficient. With the variation in Ye included, (7) may be 
written in the form 

6 = (Qe _If!) 6. +Y _ 21JeJ..Le d6e)-1 
e re \2 e re dx • 

Wilkins and Gyftopoulos4 found that for conditions simi
lar to those of the present study O. 2 ~ Y ed ~ 1. 6. Since 
the convection term is often much larger than the con
duction term in (7), neglect of the variation in Ye does 
have a noticeable effect on the value of geo It is there
fore felt by the authors that the differences between the 
two sets of results for ge are due primarily to the depen
dence of ge on Yeo Another factor affecting the accuracy 
of 6 e in our results is contained in the assumption that a 
constant value for (Q/r. -If!) may be used in the deriva
tion of the relation for the electron temperature, (93). 
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Figures 8(b), 9(b), and 11, like Fig. 6, indicate nOn
equilibrium conditions. The values of ne obtained by 
Wilkins and McCandless3 are 2-3 times as large as ours 
for J / JE '" O. 5 and approximately the same as ours for 
J/ JE '" 0.8 with the same qualitative variation in between. 
Since their distributions indicate greater values across 
the entire converter, by approximately the same amount 
across the entire converter, their values of n.lned are 
nearly the same as ours. 

Comparison of the distributions of ion current density 
in Ref. 3 with those in Figs. 8(c) and 9(c) reveals some
what smaller gradients in our curves with J, = 0 at near
ly the same point. In making the comparison, J 'd in Ref. 
3 is adjusted so as to correspond to 0',"=1200 )..2 • 

Figures 8(d) and 9(d) show that the distribution of Te 
is somewhat nonlinear, particularly in the vicinity of the 
electrodes. Note that the ion temperature distribution, 
given by (2) and (30), is a function of the electrode tem
peratures only. As discussed above, our results for Te 
do not agree well with those of Ref. 3. 

From Figs. 8(e) and 9(e) we see that the total poten
tials, equal to the sum of the chemical and electrostatic 
potentials, vary nearly linearly across the converter. 
Comparison of Figs. 8(e) and 9(e) with Figs. 8(c) and 
9(c) and Figs. 8(g) and 9(g) reveals the relative impor
tance across the converter of the electrostatic and chem
ical potentials as sources of a driving force for 
diffusion. 
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FIG. 11. Electron concentration at the emitter edge of the 
plasmas, neo' the collector edge of the plasma, ned> the point 
of maximum electron concentration, n ... , and the equilibrium 
electron concentration corresponding to the electron tempera
ture at the point of maximum electron production, nsh vs 
J/JE • 
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FIG. 12. The energy flux carried by the electrons evaluated 
at the plasma edges and by neutrals vs J/JE • The heat flux 
carried by neutrals is independent of J. 

The electrostatic potential, shown in Figs. B(f) and 
9(f), are found to have the same shape and a minimum 
at nearly the same position by Wilkins and McCandless 3 

as in this study, although they find the variation to be 
somewhat less than we do. The electric field, given in 
Figs. 8(g) and 9(g), has large values ~n the vicinity of 
the electrodes, indicating high effective electrical re
sistivity in these regions. 

In Fig. 12 we see that, since the energy flux carried 
by ions is negligible compared to that carried by neu
trals, the neutrals transport most of the energy flux and 

100 

VD(eVl 

.2 J/JE = 0.5 

J = 20 A Icm
2 

FIG. 13. The variation of the arc drop with the pressure-spac
ing product. Points marked G) were determined experimentally 
by Rufeh and Lieb (Ref. 19). 
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the electrons transport a Significant fraction of the total 
energy flux only for large values 6f J/JE • 

The variation of arc drop with pd is shown in Fig. 13. 
The present theory is the only one known to the authors 
which predicts the experimentally observedl8

,l9 minimum 
in VD which we see here. The larger values of VD at low 
pd exist because of low degrees of ionization due to loss 
of electrons to the walls by ambipolar diffusion. The 
larger values at high pd are due to the large resistance 
to diffusion in thick converters. It is found that pd in
creases with increasing Redcf> and that Redcf> = 5.4 at a 
value of pd very near the minimum in YD' Thus we have 
a single maximum in the ionization rate distribution and 
a good fit of S* to S for pd less than 0.64 mm Torr and 
a second maximum in S develops as pd increases beyond 
this value. Note that this figure and Fig. 16 are the only 
ones which include cases in which there is anything but 
a good fit of S* to S. 

Kitrilakis et al. lB plot the empirically observed 
variationaf the arc drop with pd. That curve shows the 
minimum in V D to occur at the same value of pd as in 
Fig. 13 and the slope of the V D-pd curve for large pd to 
be the same as that observed here. Their values of V D 

are larger than ours. Since the publication of Ref. 18, 
however, Rufeh and Liebl9 have found that those values 
were too large; they found that at pd = 0.25 mm Torr, 
VD ",O.25 eVand atpd=O.5 mmTorr, VD ",O.2 eV, as 
is shown in Fig. 13. This agrees very well with our 
results. 

The current-voltage characteristics are shown in Fig. 
14. The dashed lines are the double-sheath solutions dis
cussed in Sec. IIrC. Since it is not known at what point 
a double sheath appears, a number of lines correspond-
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FIG. 14. Current-voltage characteristics J/JE vs Vn!kTE • 

The solid curve is the single-sheath solution. The dashed 
curves are double-sheath solutions for various values of J. 
The dot-dash curve is a possible downswing characteristic 
for a fixed value of J E in the case where the double sheath 
forms at the pOint M'. To determine M' a criterion for double
sheath formation is required. 
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FIG. 15. Typical distribution of (Q/re-l/J). 

ing to various possibilities have been included. Note that 
each of these straight lines corresponds to a single val
ue of J and varying JE • Therefore, if a double sheath 
first appeared at point M' on the single-sheath curve, 
the remainder of the solution for constant JE would take 
the form of the dot-dash line shown in the figure, To de
termine the point M' a criterion for double-sheath forma
tion is required. This is not currently available. 

B. Conclusions 

The method presented here has proved highly accurate 
in comparison to other analytical methods and far sim;' 
pIer than the numerical "shooting" techniques, Further
more, the equations derived provide greater qualitative 
insight into converter physics than can be obtained by 
numerical methods. However, some modification in the 
present method would result in very considerable en
hancement of its usefulness, 

A major factor limiting the accuracy of the present 
method is the assumption that (Q/re -l/J) may be trea.ted 
as a constant in the integration of the electron energy 
equation. Figure 15 shows a typical distribution of (Q/re 
-l/J). We see that, although (Q./re-l/J) is not constant, it 
does not vary over a very wide range, so the error in
troduced in using a constant value is probably not very 
great. In a future study, the variation in (Q/r e -l/J) can 
be accounted for by iteration or, alternatively, by nu
merical integration, as discussed in Sec. 7. 

Allowing for variation in the thermoelectric coeffi
cient, Ye would also result in noticeable improvements 
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in the values obtained for the electron temperature. It 
would, in addition, be of value to investigate whether 
accuracy might be improved by eliminating some of the 
other assumptions made 'in Sec. mn, 

The generality of the method can be increased by using 
the improved set of boundary conditions derived by 
Keck12 and by using a more general assumed form for 
the electron production. In Fig. 16 we see S, S*, and 
(S -S*) for a case in which S contains a double maxi
mum. It is clear that (S -S*) can be represented by a 
function of the form of S*, Thus, a general form of S* 
can be obtained by superposing two forms of the type 
assumed here. It should be noted that the actual form 
for the ionization rate is likely to be somewhere between 
S "llld S* in this figure. 

The analysis could also be greatly simplified by ex
ploiting the fact that the total potentials vary nearly lin
early across the converter. In such a simplified analy
sis, it would be possible to obviate the large number of 
secondary approximations of the present method. 
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